Cellular architectures are promising in a variety of engineering applications due to attractive material properties. Additive manufacturing has reduced the difficulty in the fabrication of three-dimensional (3D) cellular materials. In this paper, the numerical homogenization method for 3D cellular materials is provided based on a short, self-contained matlab code. It is an educational description that shows how the homogenized constitutive matrix is computed by a voxel model with one material to be void and another material to be solid. A voxel generation algorithm is proposed to generate the voxel model easily by the wireframe scripts of unit cell topologies. The format of the wireframe script is defined so that the topology can be customized. The homogenization code is then extended to multimaterial cellular structures and thermal conductivity problems. The result of the numerical homogenization shows that different topologies exhibit anisotropic elastic properties to a different extent. It is also found that the anisotropy of cellular materials can be controlled by adjusting the combination of materials.

References

References
1.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
.
2.
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2005
, “
Cellular Metal Lattices With Hollow Trusses
,”
Acta Mater.
,
53
(
2
), pp.
303
313
.
3.
Clough
,
E. C.
,
Ensberg
,
J.
,
Eckel
,
Z. C.
,
Ro
,
C. J.
, and
Schaedler
,
T. A.
,
2016
, “
Mechanical Performance of Hollow Tetrahedral Truss Cores
,”
Int. J. Solids Struct.
,
91
, pp.
115
126
.
4.
Schaedler
,
T. A.
,
Ro
,
C. J.
,
Sorensen
,
A. E.
,
Eckel
,
Z.
,
Yang
,
S. S.
,
Carter
,
W. B.
, and
Jacobsen
,
A. J.
,
2014
, “
Designing Metallic Microlattices for Energy Absorber Applications
,”
Adv. Eng. Mater.
,
16
(
3
), pp.
276
283
.
5.
Wadley
,
H. N.
, and
Queheillalt
,
D. T.
,
2007
, “
Thermal Applications of Cellular Lattice Structures
,”
Mater. Sci. Forum
,
539–543
, pp.
242
247
.
6.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
7.
Bensoussan, A.
,
Lions, J. L.
, and
Papanicolaou, G.
, 2011,
Asymptotic Analysis for Periodic Structures
, Vol. 374, Elsevier, Providence, RI.
8.
Torquato
,
S.
,
2013
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
, Vol.
16
,
Springer Science & Business Media
,
New York
.
9.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
10.
Arabnejad
,
S.
, and
Pasini
,
D.
,
2013
, “
Mechanical Properties of Lattice Materials Via Asymptotic Homogenization and Comparison With Alternative Homogenization Methods
,”
Int. J. Mech. Sci.
,
77
, pp.
249
262
.
11.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization II: Analytical and Numerical Solution of Homogenization Equations
,”
Comput. Struct.
,
69
(
6
), pp.
719
738
.
12.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
13.
Chandrupatla
,
T. R.
,
Belegundu
,
A. D.
,
Ramesh
,
T.
, and
Ray
,
C.
,
2002
,
Introduction to Finite Elements Engineering
, Vol.
2
,
Prentice Hall
,
Upper Saddle River, NJ
.
14.
Lautrup
,
B.
,
2005
,
Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World
,
CRC Press
,
Boca Raton, FL
.
15.
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2016
, “
Design of Lattice Structures With Controlled Anisotropy
,”
Mater. Des.
,
93
, pp.
443
447
.
16.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
17.
Xu
,
H.
, and
Pasini
,
D.
,
2016
, “
Structurally Efficient Three-Dimensional Metamaterials With Controllable Thermal Expansion
,”
Sci. Rep.
,
6
(
1
), p.
34924
.
18.
Yu
,
C.-H.
,
Haller
,
K.
,
Ingber
,
D.
, and
Nagpal
,
R.
,
2008
, “
Morpho: A Self-Deformable Modular Robot Inspired by Cellular Structure
,”
International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
3571
3578
.
You do not currently have access to this content.