Cellular materials are found extensively in nature, such as wood, honeycomb, butterfly wings, and foam-like structures like trabecular bone and sponge. This class of materials proves to be structurally efficient by combining low weight with superior mechanical properties. Recent studies have shown that there are coupling relations between the mechanical properties of cellular materials and their relative density. Due to its favorable stretching‐dominated behavior, continuum models of the octet‐truss were developed to describe its effective mechanical properties. However, previous studies were only performed for the cubic symmetry case, where the lattice angle θ=45 deg. In this work, we study the impact of the lattice angle on the effective properties of the octet-truss: namely, the relative density, effective stiffness, and effective strength. The relative density formula is extended to account for different lattice angles up to a higher-order of approximation. Tensor transformations are utilized to obtain relations of the effective elastic and shear moduli, and Poisson's ratio at different lattice angles. Analytical formulas are developed to obtain the loading direction and value of the maximum and minimum specific elastic moduli at different lattice angles. In addition, tridimensional polar representations of the macroscopic strength of the octet‐truss are analyzed for different lattice angles. Finally, collapse surfaces for plastic yielding and elastic buckling are investigated for different loading combinations at different lattice angles. It has been found that lattice angles lower than 45 deg result in higher maximum values of specific effective elastic moduli, shear moduli, and strength.

References

References
1.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
2.
Lakes
,
R.
,
1993
, “
Materials With Structural Hierarchy
,”
Nature
,
361
(
6412
), pp.
511
515
.
3.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
4.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids.
,
49
(
8
), pp.
1747
1769
.
5.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
6.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A
,
466
(
2121
), pp.
2495
2516
.
7.
Ashby
,
M. F.
,
Evans
,
T.
,
Fleck
,
N.
,
Hutchinson
,
J. W.
,
Wadley
,
H. N. G.
, and
Gibson
,
L. J.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Oxford, UK
.
8.
Jang
,
D.
,
Meza
,
L. R.
,
Greer
,
F.
, and
Greer
,
J. R.
,
2013
, “
Fabrication and Deformation of Three-Dimensional Hollow Ceramic Nanostructures
,”
Nat. Mater.
,
12
(
10
), pp.
893
898
.
9.
Wang
,
J.
,
Lian
,
J.
,
Greer
,
J. R.
,
Nix
,
W. D.
, and
Kim
,
K.-S.
,
2006
, “
Size Effect in Contact Compression of Nano- and Microscale Pyramid Structures
,”
Acta Mater.
,
54
(
15
), pp.
3973
3982
.
10.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
11.
Meza
,
L. R.
, and
Greer
,
J. R.
,
2013
, “
Mechanical Characterization of Hollow Ceramic Nanolattices
,”
J. Mater. Sci.
,
49
(
6
), pp.
2496
2508
.
12.
Bauer
,
J.
,
Hengsbach
,
S.
,
Tesari
,
I.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2014
, “
High-Strength Cellular Ceramic Composites With 3D Microarchitecture
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
7
), pp.
2453
2458
.
13.
Montemayor
,
L. C.
, and
Greer
,
J. R.
,
2015
, “
Mechanical Response of Hollow Metallic Nanolattices: Combining Structural and Material Size Effects
,”
ASME J. Appl. Mech.
,
82
(
7
), pp.
1
10
.
14.
J.
,
Mikulas
,
M.
M.
,
H.
G.
,
Bush
,
M. F.
, and
Card
,
1977
, “
Structural Stiffness, Strength and Dynamic Characteristics of Large Tetrahedral Space Truss Structures
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TM-X-74001
.https://ntrs.nasa.gov/search.jsp?R=19770012543
15.
Nayfeh
,
A. H.
, and
Hefzy
,
M. S.
,
1978
, “
Continuum Modeling of Three-Dimensional Truss-like Space Structures
,”
AIAA J.
,
16
(
8
), pp.
779
787
.
16.
Heki
,
K.
,
1968
, “
On the Effective Rigidities of Lattice Plates
,”
Recent Res. Struct. Mech.
, pp.
31
46
.
17.
Lake
,
M. S.
,
1992
, “
Stiffness and Strength Tailoring in Uniform Space-Filling Truss Structures
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TP-3210
.http://ntrs.nasa.gov/search.jsp?R¼19920015303
18.
Abdelhamid
,
M.
, and
Czekanski
,
A.
,
2016
, “
On the Effective Properties of 3D Metamaterials
,”
ASME
Paper No. IMECE2016-67407.
19.
Herakovich
,
C. T.
,
1998
,
Mechanics of Fibrous Composites, First
,
Wiley
,
New York
.
20.
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2016
, “
Design of Lattice Structures With Controlled Anisotropy
,”
Mater. Des.
,
93
, pp.
443
447
.
21.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2009
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge, UK
.
22.
Nye
,
J. F.
,
1985
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Clarendon Press
,
Oxford, UK
.
23.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
You do not currently have access to this content.