The strain-hardening behavior of metal during the uniaxial tension can be treated as the competing result of generation and annihilation of statistically stored dislocations (SSDs). Geometrically necessary dislocations (GNDs) are generated to accommodate a lattice mismatch and maintain deformation compatibility in dual-phase (DP) steels because of the heterogeneous deformation of the microstructure. In this study, a dislocation-based strain-hardening model that encompasses GNDs was developed to describe the mechanical properties of dual-phase steel. The GNDs were obtained based on a cell model of uniaxial deformation and the SSDs were calculated using a dynamic recovery model. The strain of each phase is a nonlinear function of the overall material strain obtained by the point-interpolation method (PIM). The proposed strain-hardening model was verified by using commercially produced DP600 steel. The calculated results obtained with GNDs are able to predict more precisely the experimental data than that without. The effects of martensite volume fraction and grain size on the strain-hardening behaviors of individual phases and material were studied.

References

References
1.
Kuziak
,
R.
,
Kawalla
,
R.
, and
Waengler
,
S.
,
2008
, “
Advanced High Strength Steels for Automotive Industry
,”
Arch. Civ. Mech. Eng.
,
8
(
2
), pp.
103
117
.
2.
Uthaisangsuk
,
V.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2009
, “
Stretch-Flangeability Characterisation of Multiphase Steel Using a Microstructure Based Failure Modelling
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
617
623
.
3.
Tasan
,
C. C.
,
Diehl
,
M.
,
Yan
,
D.
,
Bechtold
,
M.
,
Roters
,
F.
,
Schemmann
,
L.
,
Zheng
,
C.
,
Peranio
,
N.
,
Ponge
,
D.
,
Koyama
,
M.
,
Tsuzaki
,
K.
, and
Raabe
,
D.
,
2015
, “
An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design
,”
Annu. Rev. Mater. Res.
,
45
(
1
), pp.
391
431
.
4.
Sirinakorn
,
T.
,
Wongwises
,
S.
, and
Uthaisangsuk
,
V.
,
2014
, “
A Study of Local Deformation and Damage of Dual Phase Steel
,”
Mater. Des.
,
64
, pp.
729
742
.
5.
Kang
,
J.
,
Ososkov
,
Y.
,
Embury
,
J.
, and
Wilkinson
,
D.
,
2007
, “
Digital Image Correlation Studies for Microscopic Strain Distribution and Damage in Dual Phase Steels
,”
Scr. Mater.
,
56
(
11
), pp.
999
1002
.
6.
Ghadbeigi
,
H.
,
Pinna
,
C.
,
Celotto
,
S.
, and
Yates
,
J. R.
,
2010
, “
Local Plastic Strain Evolution in a High Strength Dual-Phase Steel
,”
Mater. Sci. Eng.: A
,
527
(
18–19
), pp.
5026
5032
.
7.
Hosseini-Toudeshky
,
H.
,
Anbarlooie
,
B.
, and
Kadkhodapour
,
J.
,
2015
, “
Micromechanics Stress-Strain Behavior Prediction of Dual Phase Steel Considering Plasticity and Grain Boundaries Debonding
,”
Mater. Des.
,
68
, pp.
167
176
.
8.
Ramazani
,
A.
,
Schwedtb
,
A.
,
Aretz
,
A.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2013
, “
Characterization and Modelling of Failure Initiation in DP Steel
,”
Comput. Mater. Sci.
,
75
, pp.
35
44
.
9.
Paul
,
S. K.
,
2012
, “
Micromechanics Based Modeling of Dual Phase Steels: Prediction of Ductility and Failure Modes
,”
Comput. Mater. Sci.
,
56
, pp.
34
42
.
10.
Sodjit
,
S.
, and
Uthaisangsuk
,
V.
,
2012
, “
Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels
,”
Mater. Des.
,
41
, pp.
370
379
.
11.
Dan
,
W. J.
,
Zhang
,
W. G.
,
Li
,
S. H.
, and
Lin
,
Z. Q.
,
2007
, “
An Experimental Investigation of Large-Strain Tensile Behavior of a Metal Sheet
,”
Mater. Des.
,
28
(
7
), pp.
2190
2196
.
12.
Huang
,
T. T.
,
Gou
,
R. B.
,
Dan
,
W. J.
, and
Zhang
,
W. G.
,
2016
, “
Strain-Hardening Behaviors of Dual Phase Steels With Microstructure Features
,”
Mater. Sci. Eng.: A
,
672
, pp.
88
97
.
13.
Orowan
,
E.
,
1934
, “
Zur Kristallplastizität I: Tieftemperaturplastizität Und Beckersche Formel
,”
Z. Phys. A Hadrons Nucl.
,
89
, pp.
605
613
.
14.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals—Part I: Theoretical
,”
Proc. R. Soc. A
,
145
(
855
), pp.
362
387
.
15.
Korzekwa
,
D. A.
,
Matlock
,
D. K.
, and
Krauss
,
G.
,
1984
, “
Dislocation Substructure as a Function of Strain in a Dual-Phase Steel
,”
Metall. Mater. Trans. A
,
15
(
6
), pp.
1221
1228
.
16.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashiby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Mater.
,
42
(
2
), pp.
475
487
.
17.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
18.
Lyu
,
H.
,
Ruimi
,
A.
, and
Zbib
,
H. M.
,
2015
, “
A Dislocation-Based Model for Deformation and Size Effect in Multi-Phase Steels
,”
Int. J. Plast.
,
72
, pp.
44
59
.
19.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals Quelques Relations Géométriques Dams Des Cristaux Disloqués Einige Gemetrische Beziehungen in Verformten Kristallen
,”
Acta Mater.
,
1
(
2
), pp.
153
162
.
20.
Ramazani
,
A.
,
Mukherjee
,
K.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2012
, “
Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size
,”
Metall. Mater. Trans. A
,
43
(
10
), pp.
3850
3869
.
21.
Kocks
,
U. F.
, and
Mecking
,
H.
,
2003
, “
Physics and Phenomenology of Strain Hardening: The FCC Case
,”
Prog. Mater. Sci.
,
48
(
3
), pp.
171
273
.
22.
Bergström
,
Y.
,
Granbom
,
Y.
, and
Sterkenburg
,
D.
,
2010
, “
A Dislocation-Based Theory for the Deformation Hardening Behavior of DP Steels: Impact of Martensite Content and Ferrite Grain Size
,”
J. Metall.
,
2010
, p.
647198
.
23.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.
24.
Acharya
,
A.
,
Bassani
,
J. L.
, and
Beaudoin
,
A.
,
2003
, “
Geometrically Necessary Dislocations, Hardening, and a Simple Gradient Theory of Crystal Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
167
172
.
25.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1997
, “
Steady-Crack Growth and Work of Fracture for Solids Characterized by Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
45
(
8
), pp.
1253
1273
.
26.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
27.
Gao
,
H. J.
, and
Huang
,
Y. G.
,
2003
, “
Geometrically Necessary Dislocation and Size-Dependent Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
113
118
.
28.
Liu
,
L. F.
,
Dai
,
L. H.
, and
Yang
,
G. W.
,
2003
, “
Strain Gradient Effects on Deformation Strengthening Behavior of Particle Reinforced Metal Matrix Composites
,”
Mater. Sci. Eng.: A
,
345
(
1–2
), pp.
190
196
.
29.
Suh
,
Y. S.
,
Joshi
,
S. P.
, and
Ramesh
,
K. T.
,
2009
, “
An Enhanced Continuum Model for Size-Dependent Strengthening and Failure of Particle-Reinforced Composites
,”
Acta Mater.
,
57
(19), pp.
5848
5861
.
30.
Duan
,
D. M.
,
Wu
,
N. Q.
,
Zhao
,
M.
,
Slaughter
,
W. S.
, and
Mao
,
S. X.
,
2002
, “
Effect of Strain Gradients and Heterogeneity on Flow Strength of Particle Reinforced Metal-Matrix Composites
,”
ASME J. Eng. Mater. Technol.
,
124
(
2
), pp.
167
173
.
31.
Zhao
,
M. H.
,
Slaughter
,
W. S.
,
Li
,
M.
, and
Mao
,
S. X.
,
2003
, “
Material-Length-Scale-Controlled Nanoindentation Size Effects Due to Strain-Gradient Plasticity
,”
Acta Mater.
,
51
(
15
), pp.
4461
4469
.
32.
Dan
,
W. J.
,
Huang
,
T. T.
, and
Zhang
,
W. G.
,
2015
, “
A Multi-Phase Model for High Strength Steels
,”
Int. J. Appl. Mech.
,
7
(
6
), p.
1550080
.
33.
Dan
,
W. J.
,
Lin
,
Z. Q.
,
Li
,
S. H.
, and
Zhang
,
W. G.
,
2012
, “
Study on the Mixture Strain Hardening of Multi-Phase Steels
,”
Mater. Sci. Eng.: A
,
552
, pp.
1
8
.
34.
Perlade
,
A.
,
Bouaziz
,
O.
, and
Furnémont
,
Q.
,
2003
, “
A Physically Based Model for TRIP-Aided Carbon Steels Behaviour
,”
Mater. Sci. Eng.: A
,
356
(
1–2
), pp.
145
152
.
35.
Dunstan
,
D. J.
, and
Bushby
,
A. J.
,
2014
, “
Grain Size Dependence of the Strength of Metals: The Hall–Petch Effect Does Not Scale as the Inverse Square Root of Grain Size
,”
Int. J. Plast.
,
53
, pp.
56
65
.
36.
Huang
,
S.
,
He
,
C.
, and
Zhao
,
Y.
,
2016
, “
Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels
,”
J. Mater. Eng. Perform.
,
25
(
3
), pp.
966
976
.
37.
Ramazani
,
A.
,
Mukherjee
,
K.
,
Schwedt
,
A.
,
Goravanchi
,
P.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2013
, “
Quantification of the Effect of Transformation-Induced Geometrically Necessary Dislocations on the Flow-Curve Modelling of Dual-Phase Steels
,”
Int. J. Plast.
,
43
, pp.
128
152
.
38.
Bouaziz
,
O.
,
Allain
,
S.
, and
Scott
,
C.
,
2008
, “
Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels
,”
Scr. Mater.
,
58
(
6
), pp.
484
487
.
39.
Al-Abbasi
,
F. M.
, and
Nemes
,
J. A.
,
2007
, “
Characterizing DP-Steels Using Micromechanical Modeling of Cells
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
402
415
.
40.
Al-Abbasi
,
F. M.
,
2016
, “
Predicting the Effect of Ultrafine Ferrite on the Deformation Behavior of DP-Steels
,”
Comput. Mater. Sci.
,
119
, pp.
90
107
.
41.
Demir
,
E.
,
Raabe
,
D.
,
Zaafarani
,
N.
, and
Zaefferer
,
S.
,
2009
, “
Investigation of the Indentation Size Effect Through the Measurement of the Geometrically Necessary Dislocations Beneath Small Indents of Different Depths Using EBSD Tomography
,”
Acta Mater.
,
57
(
2
), pp.
559
569
.
42.
Kundu
,
A.
, and
Field
,
D. P.
,
2016
, “
Influence of Plastic Deformation Heterogeneity on Development of Geometrically Necessary Dislocation Density in Dual Phase Steel
,”
Mater. Sci. Eng.: A
,
667
, pp.
435
443
.
43.
Calcagnotto
,
M.
,
Ponge
,
D.
,
Demir
,
E.
, and
Raabe
,
D.
,
2010
, “
Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD
,”
Mater. Sci. Eng.: A
,
527
(
10–11
), pp.
2738
2746
.
44.
Xiong
,
Z. P.
,
Kostryzhev
,
A. G.
,
Stanford
,
N. E.
, and
Pereloma
,
E. V.
,
2015
, “
Microstructures and Mechanical Properties of Dual Phase Steel Produced by Laboratory Simulated Strip Casting
,”
Mater. Des.
,
88
, pp.
537
549
.
45.
Zare
,
A.
, and
Ekrami
,
A.
,
2011
, “
Effect of Martensite Volume Fraction on Work Hardening Behavior of Triple Phase (TP) Steels
,”
Mater. Sci. Eng.: A
,
528
(13–14), pp.
4422
4426
.
46.
Qiu
,
H.
,
Wang
,
L. N.
,
Hanamura
,
T.
, and
Torizuka
,
S.
,
2012
, “
Prediction of the Work-Hardening Exponent for Ultrafine-Grained Steels
,”
Mater. Sci. Eng.: A
,
536
, pp.
269
272
.
47.
Abid
,
N. H.
,
Abu Al-Rub
,
R. K.
, and
Palazotto
,
A. N.
,
2017
, “
Micromechanical Finite Element Analysis of the Effects of Martensite Particle Size and Ferrite Grain Boundaries on the Overall Mechanical Behavior of Dual Phase Steel
,”
ASME J. Eng. Mater. Technol.
,
139
(4), p.
041006
.
48.
Calcagnotto
,
M.
,
Ponge
,
D.
, and
Raabe
,
D.
,
2010
, “
Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels
,”
Mater. Sci. Eng.: A
,
527
(
29–30
), pp.
7832
7840
.
You do not currently have access to this content.