The hot deformation behavior of four different steels in the as-cast condition was investigated by means of hot compression tests conducted at temperatures ranging from 1100 °C up to 1200 °C, and at strain rates in between 0.12 and 2.4 s−1. The primary focus of this work was to check the possibility to increase the strain rate during the rough preliminary working of the ingots, i.e., to adopt a rough rolling process in place of the more conventional rough forging. The second aim of the research was to study the influence of the different characteristics of these steels in their as-cast conditions on their hot deformation behavior. It was seen that in all deformation conditions, the stress–strain compression curves show a single peak, indicating the occurrence of dynamic recrystallization (DRX). The hot deformation behavior was studied in both the condition of dynamic recovery (DRV), modeling the stress–strain curves in the initial stage of deformation, and DRX. Data of modeling were satisfactorily employed to estimate the flow stress under different conditions of temperature and strain rate. The experimental values of the activation energy for hot deformation, QHW, were determined and correlated to the chemical composition of the steels; a power law curve was found to describe the relation of QHW and the total amount of substitutional elements of the steels. The critical strain for DRX, εc, was determined as a function of the Zener–Hollomon parameter and correlated to the peak strain, εp. A ratio εcp in the range 0.45–0.65 was found, which is in agreement with literature data. All this information is crucial for a correct design of the rough deformation process of the produced ingots.

References

References
1.
Dieter
,
G. E.
, and
Kuhn
,
H. A.
,
2003
,
Handbook of Workability and Process Design
,
ASM International
, Materials Park, OH.
2.
Moreira
,
A.
, and
Balancin
,
O.
,
2005
, “
Prediction of Steel Flow Stresses Under Hot Working Condition
,”
Mater. Res.
,
8
(
3
), pp.
309
315
.
3.
Farag
,
M. M.
,
Sellars
,
C. M.
, and
Tegart
,
W. J. M. G.
,
1968
,
Deformation During Hot Working Conditions
,
Iron and Steel Institute
, London, pp.
60
67
.
4.
Baktash
,
R.
, and
Mirzadeh
,
H.
,
2016
, “
A Simple Constitutive Model for Prediction of Single-Peak Flow Curves Under Hot Working Conditions
,”
ASME J. Eng. Mater. Technol.
,
138
(2), p.
021004
.
5.
Lin
,
Y. C.
, and
Chen
,
X. M.
,
2011
, “
A Critical Review of Experimental Result and Constitutive Description for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(4), pp.
1733
1759
.
6.
Laasraoui
,
A.
, and
Jonas
,
J. J.
,
1991
, “
Prediction of Steel Flow Stresses at High Temperatures and Strain Rates
,”
Metall. Trans. A
,
22
(7), pp.
1545
1558
.
7.
Poliak
,
E. I.
, and
Jonas
,
J. J.
,
1996
, “
A One Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization
,”
Acta Mater.
,
44
(
1
), pp.
127
136
.
8.
Sellars
,
C. M.
,
1990
, “
Modelling Microstructural Development During Hot Rolling
,”
Mater. Sci. Technol.
,
6
(11), pp.
1072
1081
.
9.
Sellars
,
C. M.
,
1980
,
Hot Working and Forming Processes
,
C. M.
Sellars
and
G. J.
Davies
, eds.,
The Metals Society
,
London
.
10.
Sellars
,
C. M.
, and
Whiteman
,
J. A.
,
1979
, “
Recrystallization and Grain Growth in Hot Rolling
,”
Mater. Sci.
,
13
(3–4), pp.
187
194
.
11.
Cohen
,
R. E.
, and
Durham
,
D. R.
,
1990
, “
Microstructure as a Criterion for the Selection of Hot Working Process Parameters for Plain Medium Carbon Steel
,”
ASME J. Eng. Mater. Technol.
,
112
(
1
), pp.
90
94
.
12.
McQueen
,
H. J.
, and
Ryan
,
N. D.
,
2002
, “
Constitutive Analysis in Hot Working
,”
Mater. Sci. Eng. A
,
322
(1–2), pp.
43
63
.
13.
Sellars
,
C. M.
, and
McTegart
,
W.
,
1966
, “
On the Mechanism of Hot Deformation
,”
Acta Metall.
,
14
(
9
), pp.
1136
1138
.
14.
Humphreys
,
F. J.
, and
Haterly
,
M.
,
1995
,
Recrystallization and Related Phenomena
,
Elsevier
, Amsterdam, The Netherlands.
15.
McQueen
,
H. J.
,
2004
, “
Development of Dynamic Recrystallization Theory
,”
Mater. Sci. Eng. A
,
387–389
, pp.
203
208
.
16.
Abbasi
,
S. M.
, and
Shokuhfar
,
A.
,
2007
, “
Prediction of Hot Deformation Behavior of 10Cr-10Ni-5Mo-2Cu Steel
,”
Mater. Lett.
,
61
(11–12), pp.
2523
2526
.
17.
Wray
,
P. J.
,
1984
, “
Effect of Composition and Initial Grain Size on the Dynamic Recrystallization of Austenite in Plain Carbon Steels
,”
Metall. Trans. A
,
15
(11), pp.
2009
2019
.
18.
Wray
,
P. J.
,
1982
, “
Effect of Carbon Content on the Plastic Flow of Plain Carbon Steels at Elevated Temperatures
,”
Metall. Trans. A
,
13
(1), pp.
125
134
.
19.
Collinson
,
D. C.
,
Hodgson
,
P. D.
, and
Paker
,
B. A.
,
1993
,
The Deformation and Recrystallisation Behaviour of Austenite During Hot Rolling
,
J. J.
Jonas
,
T. R.
Bieler
, and
K. J.
Bowman
, eds.,
TMS Mass, Pittsburgh, PA
, pp.
41
58
.
20.
Shida
,
S.
,
1969
, “
Empirical Formula of Flow Stress of Carbon Steels: Resistance to Deformation of Carbon Steels at Elevated Temperature
,”
Jpn. Soc. Technol. Plast.
,
10
(103), pp.
610
617
.
21.
Dixon
,
T. J.
,
Sellars
,
C. M.
, and
Whiteman
,
J. A.
,
1996
, “
The Effect of Carbon Content During Hot Deformation of Austenite
,”
37th Mechanical Working and Steel Processing Conference
, Hamilton, ON, Canada, Oct. 22–25, pp.
705
710.
22.
Jaipal
,
J.
,
Davies
,
C. H. J.
,
Wynne
,
B. P.
,
Collinson
,
D. C.
,
Brownrigg
,
A.
, and
Hodgson
,
P. D.
,
1997
, “
Effect of Carbon Content on the Hot Flow Stress and Dynamic Recrystallisation Behaviour of Plain Carbon Steels
,”
International Conference on Thermomechanical Processing of Steels and Other Materials
, Wollongong , Australia, July 7–11, pp. 539–545.
23.
Chen
,
M. S.
,
Lin
,
Y. C.
, and
Ma
,
X. S.
,
2012
, “
The Kinetics of Dynamic Recrystallization of 42CrMo Steel
,”
Mater. Sci. Eng. A
,
556
, pp.
260
266
.
24.
Xu
,
Y.
,
Tang
,
D.
,
Song
,
Y.
, and
Pan
,
X.
,
2012
, “
Dynamic Recrystallization Kinetics Model of X70 Pipeline Steel
,”
Mater. Des.
,
39
, pp.
168
174
.
25.
Wei
,
H.-L.
,
Liu
,
G.-Q.
,
Zhao
,
H.-T.
, and
Kang
,
R.-M.
,
2013
, “
Hot Deformation Behavior of Two C–Mn–Si Based and C–Mn–Al Based Microalloyed High-Strength Steels: A Comparative Study
,”
Mater. Des.
,
50
, pp.
484
490
.
26.
Mirzadeh
,
H.
, and
Najafizadeh
,
A.
,
2010
, “
Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization
,”
Mater. Des.
,
31
(3), pp.
1174
1179
.
27.
Rakhshkhorshid
,
M.
, and
Hashemi
,
S. H.
,
2013
, “
Experimental Study of Hot Deformation Behavior in API X65 Steel
,”
Mater. Sci. Eng. A
,
573
, pp.
37
44
.
28.
Chatterjee
,
A.
,
Chakrabarti
,
D.
,
Moitra
,
A.
,
Mitra
,
R.
, and
Bhaduri
,
A. K.
,
2015
, “
Effect of Deformation Temperature on the Ductile–Brittle Transition Behavior of a Modified 9Cr–1Mo Steel
,”
Mater. Sci. Eng. A
,
630
, pp.
58
70
.
29.
Zhang
,
C.
,
Zhang
,
L.
,
Shen
,
W.
,
Liua
,
C.
,
Xia
,
Y.
, and
Li
,
R.
,
2016
, “
Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr–Ni–Mo Alloyed Steel
,”
Mater. Des.
,
90
, pp.
804
814
.
30.
Rastegari
,
H.
,
Kermanpur
,
A.
,
Najafizadeh
,
A.
,
Porter
,
D.
, and
Somani
,
M.
,
2015
, “
Warm Deformation Processing Maps for the Plain Eutectoid Steels
,”
J. Alloys Compd.
,
626
, pp.
136
144
.
31.
Mirzadeh
,
H.
,
Parsa
,
M. H.
, and
Ohadi
,
D.
,
2013
, “
Hot Deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size
,”
Mater. Sci. Eng. A
,
569
, pp.
54
60
.
32.
Dehghan-Manshadi
,
A.
, and
Hodgson
,
P. D.
,
2008
, “
Hot Deformation and Recrystallization of Austenitic Stainless Steel—Part I: Dynamic Recrystallization
,”
Metall. Mater. Trans. A
,
39
(6), pp.
1359
1370
.
33.
Siyasiya
,
C. W.
, and
Stumpf
,
W. E.
,
2015
, “
Constitutive Constants for Hot Working of Steels: The Critoical Strain for Dynamic Recrystallization in C-Mn Steels
,”
J. Mater. Eng. Perform.
,
24
(
1
), pp.
468
476
.
34.
Medina
,
S. F.
, and
Hernandez
,
C. A.
,
1996
, “
General Expression of the Zener–Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels
,”
Acta Mater
,
44
(
1
), pp.
137
148
.
35.
Sakai
,
T.
, and
Ohashi
,
M.
,
1981
, “
The Effect of Temperature, Strain Rate and Carbon Content on Hot Deformation of Carbon Steels
,”
Tetsu to Hagane
,
67
(
11
), pp.
134
143
.
36.
Guo
,
Z.
, and
Li
,
L.
,
2016
, “
Influences of Alloying Elements on Warm Deformation Behavior of High-Mn TRIP Steel With Martensitic Structure
,”
Mater. Des.
,
89
(
5
), pp.
665
675
.
37.
Inoue
,
T.
,
Nanba
,
S.
,
Katsumata
,
M.
, and
Anan
,
G.
,
1990
, “
Matematical and Physical Simulation of Hot Rolling
,” International Conference on Modelling of Hot Rolling, pp.
290
295
.
38.
Vasilyev
,
A. A.
,
Sokolov
,
S. F.
,
Kolbasnikov
,
N. G.
, and
Sokolov
,
D. F.
,
2011
, “
Effect of Alloying on the Self-Diffusion Activation Energy in γ-Iron
,”
Phys. Solid State
,
53
(11), pp.
2194
2200
.
39.
Medvedeva
,
N. I.
,
Park
,
M. S.
,
van Aken
,
D. C.
, and
Medvedeva
,
J. E.
,
2011
, “
First Principles Study of the Mn, Al, and C Distribution and Their Effect on the Stacking Fault Energies in FCC Fe
,”
J. Alloys Compd.
,
582
, pp.
475
482
.
40.
Venugopal
,
S.
,
Mannan
,
S. L.
, and
Prasad
,
Y. V. R. K.
,
1993
, “
Influence of Cast Versus Wrought Microstructure on the Processing Map for Hot Working of Stainless Steel Type AISI 304
,”
Mater. Lett.
,
17
(
6
), pp.
388
392
.
41.
El Wahabi
,
M.
,
Gavard
,
L.
,
Montheillet
,
F.
,
Cabrera
,
J. M.
, and
Prado
,
J. M.
,
2005
, “
Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels
,”
Acta Mater.
,
53
(17), pp.
4605
4612
.
42.
Eghbali
,
B.
,
2007
, “
EBSD Study on the Formation of Fine Ferrite Grains in Plain Carbon Steel During Warm Deformation
,”
Mater. Lett.
,
61
(18), pp.
4006
4010
.
43.
Poliak
,
E. I.
, and
Jonas
,
J. J.
,
2003
, “
Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation
,”
ISIJ Int.
,
43
(5), pp.
684
691
.
44.
Guo-Zheng
,
Q.
,
Guisheng
,
L.
,
Tao
,
C.
,
Yixin
,
W.
,
Yanwei
,
Z.
, and
Jie
,
Z.
,
2010
, “
Dynamic Recrystallization Kinetics of 42CrMo Steel During Compression at Different Temperatures and Strain Rates
,”
Mater. Sci. Eng. A
,
528
(13–14), pp.
4643
4651
.
45.
McQueen
,
H. J.
, and
Imbert
,
C. A. C.
,
2004
, “
Dynamic Recrystallization: Plasticity Enhancing Structural Development
,”
J. Alloys Compd.
,
378
(1–2), pp.
35
43
.
46.
Moon
,
H. K.
,
Seong Lee
,
J.
,
Yoo
,
S. J.
,
Joun
,
M. S.
, and
Lee
,
J. K.
,
2007
, “
Hot Deformation Behavior of Bearing Steels
,”
ASME J. Eng. Mater. Technol.
,
129
(3), pp.
349
356
.
47.
Shafiei
,
E.
, and
Ebrahimi
,
G. R.
,
2013
, “
A New Constitutive Equation to Predict Single Peak Flow Stress Curves
,”
ASME J. Eng. Mater. Technol.
,
135
(1), p.
011006
.
48.
Sankar
,
J.
,
Hawkins
,
D.
, and
Mc Queen
,
H. J.
,
1979
, “
Behaviour of Low-Carbon and HSLA Steels During Torsion-Simulated Continuous and Interrupted Hot Rolling Practice
,”
Met. Technol.
,
6
(1), pp.
325
331
.
49.
Rao
,
K. P.
,
Hawbolt
,
E. B.
,
Mc Queen
,
H. J.
, and
Baragar
,
D.
,
1993
, “
Comparative High Temperature Constitutive Relationship for a Carbon Steel From Gleeble, Cam-Plastometer and Torsion Testing
,”
Can. Metall. Q.
,
32
(2), pp.
165
175
.
50.
Imbert
,
C. A. C.
, and
Mc Queen
,
H. J.
,
2001
, “
Peak Strength, Strain Hardening and Dynamic Restoration of A2 and M2 Tool Steels in Hot Deformation
,”
Mater. Sci. Eng.
,
313
(1–2), pp.
88
103
.
You do not currently have access to this content.