Grain size control of any engineering metal is very important in the hot upsetting process. Generally, the grain size directly controls the mechanical properties and performance of the material. Al–B4C composite finds extensive applications in nuclear industries, defense, and electronic industries. Therefore, the aim of this work is to study the dynamic recrystallization (DRX) behavior of Al–4 wt % B4C composite during the hot upsetting test. Experimental work was performed on sintered Al–4 wt % B4C preforms at various initial relative density (IRD) values of 80%, 85%, and 90%, and over the temperature range of 300–500 °C and strain rates range of 0.1–0.3 s−1. The DRXed grain size of Al–4 wt % B4C preforms for IRDes, and temperatures and strain rates were evaluated by using an optical microscope. The activation energy (Q) and Zener–Hollomon parameter of sintered Al–4 wt % B4C preforms were calculated for various deformation conditions and IRDes. The mathematical models of DRX were developed as a function of Zener–Hollomon parameter for various IRDes to predict the DRXed grain size. It was found that the DRXed grain size decreases with increasing Zener–Hollomon parameter. Verification tests were done between the measured and predicted DRXed grain size for various IRDes, and absolute and mean absolute error was found to be 9.92% and 8.58%, respectively.

References

References
1.
Li
,
D.
,
Guo
,
Q.
,
Guo
,
S.
,
Peng
,
H.
, and
Wu
,
Z.
,
2011
, “
The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy
,”
Mater. Des.
,
32
(
2
), pp.
696
705
.
2.
Shaban
,
M.
, and
Eghbali
,
B.
,
2011
, “
Characterization of Austenite Dynamic Recrystallization Under Different Z Parameters in a Microalloyed Steel
,”
J. Mater. Sci. Technol.
,
27
(
4
), pp.
359
363
.
3.
Harrigan
,
W. C.
, Jr.
,
1998
, “
Commercial Processing of Metal Matrix Composites
,”
Mater. Sci. Eng. A
,
244
(
1
), pp.
75
79
.
4.
Thevenot
,
T.
,
1990
, “
Boron Carbide—A Comprehensive Review
,”
J. Eur. Ceram. Soc.
,
6
(
4
), pp.
205
225
.
5.
Nie
,
C. Z.
,
Gu
,
J. J.
,
Liu
,
J. L.
, and
Zhang
,
D.
,
2007
, “
Production of Boron Carbide Reinforced 2024 Aluminum Matrix Composites by Mechanical Alloying
,”
Mater. Trans.
,
48
(
5
), pp.
990
995
.
6.
Mohanty
,
R. M.
, and
Balasubramanian
,
K.
,
2009
, “
Boron Rich Boron Carbide: An Emerging High Performance Material
,”
Key Eng. Mater.
,
395
, pp.
125
142
.
7.
Abenojar
,
J.
,
Velasco
,
F.
, and
Martinez
,
M. A.
,
2007
, “
Optimization of Processing Parameters for the Al+10% B4C System Obtained by Mechanical Alloying
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
441
446
.
8.
Chen
,
X. G.
,
St-Georges
,
L.
, and
Roux
,
M.
,
2012
, “
Mechanical Behavior of High Boron Content Al–B4C Metal Matrix Composites at Elevated Temperatures
,”
Mater. Sci. Forum
,
706–709
, pp.
631
637
.
9.
Abouelmagd
,
G.
,
2004
, “
Hot Deformation and Wear Resistance of P/M Aluminium Metal Matrix Composites
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1395
1401
.
10.
Cambronero
,
L. E. G.
,
Sanchez
,
E.
,
Ruiz-Roman
,
J. M.
, and
Ruiz-Prieto
,
J. M.
,
2003
, “
Mechanical Characterisation of AA7015 Aluminium Alloy Reinforced With Ceramics
,”
J. Mater. Process. Technol.
,
143–144
, pp.
378
383
.
11.
Kodzhaspirov
,
G. E.
, and
Terentyev
,
M. I.
,
2012
, “
Modeling the Dynamically Recrystallized Grain Size Evolution of a Superalloy
,”
Mater. Phys. Mech.
,
13
, pp.
70
76
.http://www.ipme.ru/e-journals/MPM/no_11312/09_kodzhaspirov.pdf
12.
Chen
,
X. M.
,
Lin
,
Y. C.
,
Wen
,
D. X.
,
Zhang
,
J. L.
, and
He
,
M.
,
2014
, “
Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation
,”
Mater. Des.
,
57
, pp.
568
577
.
13.
Lin
,
Y. C.
,
Chen
,
X. M.
, and
Zhong
,
J.
,
2008
, “
Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperatures
,”
Mater. Lett.
,
62
(
14
), pp.
2132
2135
.
14.
Xu
,
S. W.
,
Matsumoto
,
N.
,
Kamado
,
S.
,
Honma
,
T.
, and
Kojima
,
Y.
,
2009
, “
Dynamic Microstructural Changes in Mg–9Al–1Zn Alloy During Hot Compression
,”
Scr. Mater.
,
61
(
3
), pp.
249
252
.
15.
Guo
,
Q. M.
,
Li
,
D. F.
, and
Guo
,
S. L.
,
2012
, “
Microstructural Models of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy
,”
Mater. Manuf. Processes
,
27
(
9
), pp.
990
995
.
16.
Guo
,
Q.
,
Li
,
D.
,
Guo
,
S.
,
Peng
,
H.
, and
Hu
,
J.
,
2011
, “
The Effect of Deformation Temperature on the Microstructure Evolution of Inconel 625 Superalloy
,”
J. Nucl. Mater.
,
414
(
3
), pp.
440
450
.
17.
Chakravarthi
,
K. V. A.
,
Koundinya
,
N. T. B. N.
,
Murty
,
S. V. S. N.
, and
Rao
,
B. N.
,
2017
, “
Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
1174
1185
.
18.
Narayan
,
S.
, and
Rajeshkannan
,
A.
,
2011
, “
Densification Behaviour in Forming of Sintered Iron–0.35% Carbon Powder Metallurgy Preform During Cold Upsetting
,”
Mater. Des.
,
32
(
2
), pp.
1006
1013
.
19.
Narayanasamy
,
R.
,
Anandakrishnan
,
V.
, and
Pandey
,
K. S.
,
2008
, “
Effect of Geometric Work-Hardening and Matrix Work-Hardening on Workability and Densification of Aluminium–3.5% Alumina Composite During Cold Upsetting
,”
Mater. Des.
,
29
(
8
), pp.
1582
1599
.
20.
Venugopal
,
P.
,
Venkatraman
,
S.
,
Vasudeva
,
R.
, and
Padmanabhan
,
K. A.
,
1988
, “
Ring–Compression Tests on Sintered Iron Preforms
,”
J. Mech. Work. Technol.
,
16
(
1
), pp.
51
64
.
21.
Taleghani
,
M. A. J.
,
Navas
,
E. M. R.
,
Salehi
,
M.
, and
Torralba
,
J. M.
,
2012
, “
Hot Deformation Behaviour and Flow Stress Prediction of 7075 Aluminium Alloy Powder Compacts During Compression at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
534
, pp.
624
631
.
22.
Chen
,
X. M.
,
Lin
,
Y. C.
,
Chen
,
M. S.
,
Li
,
H. B.
,
Wena
,
D. X.
,
Zhang
,
J. L.
, and
He
,
M.
,
2015
, “
Microstructural Evolution of a Nickel-Based Superalloy During Hot Deformation
,”
Mater. Des.
,
77
, pp.
41
49
.
23.
Ren
,
F.
,
Chen
,
F.
, and
Chen
,
J.
,
2014
, “
Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel
,”
Adv. Mater. Sci. Eng.
,
2014
, p.
986928
.http://dx.doi.org/10.1155/2014/986928
24.
Bedir
,
F.
,
2013
, “
Modeling Approach and Plastic Deformation Analysis of 6063 Aluminum Alloy During Compression at Elevated Temperatures
,”
Mater. Des.
,
49
, pp.
953
956
.
25.
Chen
,
F.
,
Cui
,
Z.
, and
Chen
,
S.
,
2011
, “
Recrystallization of 30Cr2Ni4MoV Ultra-Super-Critical Rotor Steel During Hot Deformation—Part I: Dynamic Recrystallization
,”
Mater. Sci. Eng. A
,
528
(
15
), pp.
5073
5080
.
26.
Zhou
,
M.
,
Lin
,
Y. C.
,
Deng
,
J.
, and
Jiang
,
Y. Q.
,
2014
, “
Hot Tensile Deformation Behaviors and Constitutive Model of an Al–Zn–Mg–Cu Alloy
,”
Mater. Des.
,
59
, pp.
141
150
.
27.
Zhang
,
H.
,
Zhang
,
K.
,
Zhou
,
H.
,
Lu
,
Z.
,
Zhao
,
C.
, and
Yang
,
X.
,
2015
, “
Effect of Strain Rate on Microstructure Evolution of a Nickel-Based Superalloy During Hot Deformation
,”
Mater. Des.
,
80
, pp.
51
62
.
28.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.
29.
Rokni
,
M. R.
,
Zarei-Hanzaki
,
A.
,
Roostaei
,
A. A.
, and
Abolhasani
,
A.
,
2011
, “
Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing
,”
Mater. Des.
,
32
(
10
), pp.
4955
4960
.
30.
Gale
,
W. F.
, and
Totemeier
,
T. C.
, eds.,
2003
,
Smithells Metals Reference Book
,
Butterworth–Heinemann
, Burlington, VT.
31.
Matsui
,
T.
,
Takizawa
,
H.
,
Kikuchi
,
H.
, and
Wakita
,
S.
,
2000
, “
The Microstructure Prediction of Alloy 720LI for Turbine Disk Applications
,”
9th International Symposium on Superalloys
, Champion, PA, Sept. 9–13, pp.
127
133
.http://www.tms.org/superalloys/10.7449/2000/Superalloys_2000_127_133.pdf
You do not currently have access to this content.