Micro-computed tomography (CT) was used as a tool to investigate the deformation behavior of particulate-filled composite materials. Three different shapes of glass fillers (spherical, flake, and fiber) and filler mass fractions (5%, 10%, and 15%) were introduced to the epoxy resin. Rockwell hardness H scale indentation test was used to deform the composite material. The composite materials were scanned before and after the indentation test by using micro-CT. Displacement field for each filler type and mass fraction were measured through correlation of before and after scan data. The effects of filler type and mass fraction on the internal displacement field were investigated. It was also demonstrated that micro-CT can be used as a tool to create realistic representative volume elements (RVEs) for particulate-filled composite materials instead of randomly distributed particles within the matrix material.

References

References
1.
Kushvaha
,
V.
, and
Tippur
,
H.
,
2014
, “
Effect of Filler Shape, Volume Fraction and Loading Rate on Dynamic Fracture Behavior of Glass-Filled Epoxy
,”
Composites, Part B
,
64
, pp.
126
137
.
2.
Lee
,
J.
, and
Yee
,
A. F.
,
2000
, “
Fracture of Glass Bead/Epoxy Composites: On Micro-Mechanical Deformations
,”
Polymer
,
41
(
23
), pp.
8363
8373
.
3.
Nakamura
,
Y.
,
Yamaguchi
,
M.
,
Okubo
,
M.
, and
Matsumoto
,
T.
,
1992
, “
Effects of Particle Size on Mechanical and Impact Properties of Epoxy Resin Filled With Spherical Silica
,”
J. Appl. Polym. Sci.
,
45
(
7
), pp.
1281
1289
.
4.
Wetzel
,
B.
,
Haupert
,
F.
, and
Zhang
,
M. Q.
,
2003
, “
Epoxy Nanocomposites With High Mechanical and Tribological Performance
,”
Compos. Sci. Technol.
,
63
(
14
), pp.
2055
2067
.
5.
Kitey
,
R.
, and
Tippur
,
H. V.
,
2005
, “
Role of Particle Size and Filler-Matrix Adhesion on Dynamic Fracture of Glass-Filled Epoxy. I. Macromeasurements
,”
Acta Mater.
,
53
(
4
), pp.
1153
1165
.
6.
Kushvaha
,
V.
,
Branch
,
A.
, and
Tippur
,
H.
,
2014
, “
Effect of Loading Rate on Dynamic Fracture Behavior of Glass and Carbon Fiber Modified Epoxy
,”
Dyn. Behav. Mater.
,
1
, pp.
169
176
.
7.
Kitey
,
R.
, and
Tippur
,
H. V.
,
2008
, “
Dynamic Crack Growth Past a Stiff Inclusion: Optical Investigation of Inclusion Eccentricity and Inclusion-Matrix Adhesion Strength
,”
Exp. Mech.
,
48
(
1
), pp.
37
53
.
8.
Hussain
,
M.
,
Nakahira
,
A.
,
Nishijima
,
S.
, and
Niihara
,
K.
,
1996
, “
Fracture Behavior and Fracture Toughness of Particulate Filled Epoxy Composites
,”
Mater. Lett.
,
27
(
1–2
), pp.
21
25
.
9.
Singh
,
R. P.
,
Zhang
,
M.
, and
Chan
,
D.
,
2002
, “
Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction
,”
J. Mater. Sci.
,
37
(
4
), pp.
781
788
.
10.
Kinloch
,
A. J.
,
Shaw
,
S. J.
, and
Tod
,
D. A.
,
1983
, “
Deformation and Fracture Behaviour of a Rubber-Toughened Epoxy: 1. Microstructure and Fracture Studies
,”
Polymer
,
24
(
10
), pp.
1341
1354
.
11.
Bagheri
,
R.
, and
Pearson
,
R. A.
,
2000
, “
Role of Particle Cavitation in Rubber-Toughened Epoxies: II. Inter-Particle Distance
,”
Polymer
,
41
(
1
), pp.
269
276
.
12.
Spanoudakis
,
J.
, and
Young
,
R. J.
,
1984
, “
Crack Propagation in a Glass Particle-Filled Epoxy Resin: Part 1—Effect of Particle Volume Fraction and Size
,”
J. Mater. Sci.
,
19
(
2
), pp.
473
486
.
13.
Amdouni
,
N.
,
Sautereau
,
H.
, and
Gerard
,
J. F.
,
1992
, “
Epoxy Composites Based on Glass-Beats. II. Mechanical-Properties
,”
J. Appl. Polym. Sci.
,
46
(
10
), pp.
1723
1735
.
14.
Yung
,
K. C.
,
Zhu
,
B. L.
,
Yue
,
T. M.
, and
Xie
,
C. S.
,
2009
, “
Preparation and Properties of Hollow Glass Microsphere-Filled Epoxy-Matrix Composites
,”
Compos. Sci. Technol.
,
69
(
2
), pp.
260
264
.
15.
Fu
,
S. Y.
,
Feng
,
X. Q.
,
Lauke
,
B.
, and
Mai
,
Y. W.
,
2008
, “
Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-Polymer Composites
,”
Composites, Part B
,
39
(
6
), pp.
933
961
.
16.
Mortazavi
,
B.
,
Baniassadi
,
M.
,
Bardon
,
J.
, and
Ahzi
,
S.
,
2013
, “
Modeling of Two-Phase Random Composite Materials by Finite Element, Mori-Tanaka and Strong Contrast Methods
,”
Composites, Part B
,
45
(
1
), pp.
1117
1125
.
17.
Sheng
,
N.
,
Boyce
,
M. C.
,
Parks
,
D. M.
,
Rutledge
,
G. C.
,
Abes
,
J. I.
, and
Cohen
,
R. E.
,
2004
, “
Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle
,”
Polymer
,
45
(
2
), pp.
487
506
.
18.
Hbaieb
,
K.
,
Wang
,
Q. X.
,
Chia
,
Y. H. J.
, and
Cotterell
,
B.
,
2007
, “
Modelling Stiffness of Polymer/Clay Nanocomposites
,”
Polymer
,
48
(
3
), pp.
901
909
.
19.
Djebara
,
Y.
,
El Moumen
,
A.
,
Kanit
,
T.
,
Madani
,
S.
, and
Imad
,
A.
,
2016
, “
Modeling of the Effect of Particles Size, Particles Distribution and Particles Number on Mechanical Properties of Polymer-Clay Nanocomposites: Numerical Homogenization Versus Experimental Results
,”
Composites, Part B
,
86
, pp.
135
142
.
20.
Shen
,
H.
,
Nutt
,
S.
, and
Hull
,
D.
,
2004
, “
Direct Observation and Measurement of Fiber Architecture in Short Fiber-Polymer Composite Foam Through Micro-CT Imaging
,”
Compos. Sci. Technol.
,
64
(
13–14
), pp.
2113
2120
.
21.
Bernasconi
,
A.
,
Cosmi
,
F.
, and
Hine
,
P. J.
,
2012
, “
Analysis of Fibre Orientation Distribution in Short Fibre Reinforced Polymers: A Comparison Between Optical and Tomographic Methods
,”
Compos. Sci. Technol.
,
72
(
16
), pp.
2002
2008
.
22.
Naouar
,
N.
,
Vidal-Salle
,
E.
,
Schneider
,
J.
,
Maire
,
E.
, and
Boisse
,
P.
,
2015
, “
3D Composite Reinforcement Meso F.E. Analyses Based on X-Ray Computed Tomography
,”
Compos. Struct.
,
132
, pp.
1094
1104
.
23.
Blacklock
,
M.
,
Bale
,
H.
,
Begley
,
M.
, and
Cox
,
B.
,
2012
, “
Generating Virtual Textile Composite Specimens Using Statistical Data From Micro-Computed Tomography: 1D Tow Representations for the Binary Model
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
451
470
.
24.
Straumit
,
I.
,
Lomov
,
S. V.
, and
Wevers
,
M.
,
2015
, “
Quantification of the Internal Structure and Automatic Generation of Voxel Models of Textile Composites From X-Ray Computed Tomography Data
,”
Composites, Part A
,
69
, pp.
150
158
.
25.
Zhang
,
M.
, and
Jivkov
,
A. P.
,
2016
, “
Micromechanical Modelling of Deformation and Fracture of Hydrating Cement Paste Using X-Ray Computed Tomography Characterization
,”
Composites, Part B
,
88
, pp.
64
72
.
26.
Badel
,
P.
,
Vidal-Sallé
,
E.
,
Maire
,
E.
, and
Boisse
,
P.
,
2009
, “
Simulation and Tomography Analysis of Textile Composite Reinforcement Deformation at the Mesoscopic Scale
,”
Int. J. Mater. Form
,
2
(
Suppl. 1
), pp.
189
192
.https://doi.org/10.1007/s12289-009-0572-z
27.
Badel
,
P.
,
Vidal-Salle
,
E.
,
Maire
,
E.
, and
Boisse
,
P.
,
2008
, “
Simulation and Tomography Analysis of Textile Composite Reinforcement Deformation at the Mesoscopic Scale
,”
Compos. Sci. Technol.
,
68
(
12
), pp.
2433
2440
.
28.
Rask
,
M.
,
Madsen
,
B.
,
Sorensen
,
B. F.
,
Fife
,
J. L.
,
Martyniuk
,
K.
, and
Lauridsen
,
E. M.
,
2012
, “
In Situ Observations of Microscale Damage Evolution in Unidirectional Natural Fibre Composites
,”
Composites, Part A
,
43
(
10
), pp.
1639
1649
.
29.
Correlated Solutions
,
2017
, “Vic-Volume,” Correlated Solutions, Irmo, SC, accessed July 1, 2016, http://correlatedsolutions.com/vic-volume/
30.
Kari
,
S.
,
Berger
,
H.
,
Rodriguez-Ramos
,
R.
, and
Gabbert
,
U.
,
2007
, “
Computational Evaluation of Effective Material Properties of Composites Reinforced by Randomly Distributed Spherical Particles
,”
Compos. Struct.
,
77
(
2
), pp.
223
231
.
You do not currently have access to this content.