In this paper, an elastoplastic-damage constitutive model is presented. The formulation is cast within the framework of continuum damage mechanics (CDM) by means of the internal variable theory of thermodynamics. The damage is assumed as a tensor type variable and its evolution is developed based on the energy equivalence hypothesis. In order to discriminate the plastic and damage deformation, two surfaces named as plastic and damage are introduced. The damage surface has been developed so that it can model the nonlinear variation of damage. The details of the model besides its implicit integration algorithm are presented. The model is implemented as a user-defined subroutine user-defined material (UMAT) in the abaqus/standard finite element program for numerical simulation purposes. In the regard of investigating the capability of model, the shear and tensile tests are experimentally conducted, and corresponding results are compared with those predicted numerically. These comparisons are also accomplished for several experiments available in the literature. Satisfactory agreement between experiments and numerical predictions provided by the model implies the capability of the model to predict the plastic deformation as well as damage evolution in the materials.

References

References
1.
Bonora
,
N.
,
Majzoobi
,
G.
, and
Khademi
,
E.
,
2014
, “
Numerical Implementation of a New Coupled Cyclic Plasticity and Continum Damage Model
,”
Comput. Mater. Sci.
,
81
, pp.
538
547
.
2.
Soyarslan
,
C.
, and
Tekkaya
,
A. E.
,
2010
, “
A Damage Coupled Orthotropic Finite Plasticity Model for Sheet Metal Forming: CDM Approach
,”
Comput. Mater. Sci.
,
48
(
1
), pp.
150
165
.
3.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
4.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
5.
Abu Al-Rub
,
R. K.
, and
Kim
,
S. M.
,
2010
, “
Computational Applications of a Coupled Plasticity-Damage Constitutive Model for Simulating Plain Concrete Fracture
,”
Eng. Fract. Mech.
,
77
(
10
), pp.
1577
1603
.
6.
Cicekli
,
U.
,
Voyiadjis
,
G. Z.
, and
Abu Al-Rub
,
R. K.
,
2007
, “
A Plasticity and Anisotropic Damage Model for Plain Concrete
,”
Int. J. Plast.
,
23
(
10–11
), pp.
1874
1900
.
7.
Voyiadjis
,
G. Z.
,
Taqieddin
,
Z. N.
, and
Kattan
,
P. I.
,
2009
, “
Theoretical Formulation of a Coupled Elastic-Plastic Anisotropic Damage Model for Concrete Using the Strain Energy Equivalence Concept
,”
Int. J. Damage Mech.
,
18
(
7
), pp.
603
638
.
8.
Voyiadjis
,
G. Z.
,
Taqieddin
,
Z. N.
, and
Kattan
,
P. I.
,
2008
, “
Anisotropic Damage-Plasticity Model for Concrete
,”
Int. J. Plast.
,
24
(
10
), pp.
1946
1965
.
9.
Brünig
,
M.
,
2006
, “
Continuum Framework for the Rate-Dependent Behavior of Anisotropically Damaged Ductile Metals
,”
Acta Mech.
,
186
(
1
), pp.
37
53
.
10.
Rodin
,
G. J.
,
2000
, “
Continuum Damage Mechanics and Creep Life Analysis
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
193
196
.
11.
Bonora
,
N.
,
1997
, “
A Nonlinear CDM Model for Ductile Failure
,”
Eng. Fract. Mech.
,
58
(
1
), pp.
11
28
.
12.
Chow
,
C. L.
, and
Yang
,
X. J.
,
2004
, “
A Generalized Mixed Isotropic-Kinematic Hardening Plastic Model Coupled With Anisotropic Damage for Sheet Metal Forming
,”
Int. J. Damage Mech.
,
13
(
1
), pp.
81
101
.
13.
Ganjiani
,
M.
,
Naghdabadi
,
R.
, and
Asghari
,
M.
,
2012
, “
An Elastoplastic Damage-Induced Anisotropic Constitutive Model at Finite Strains
,”
Int. J. Damage Mech.
,
22
(
4
), pp. 499–529.
14.
Ganjiani
,
M.
,
2013
, “
Identification of Damage Parameters and Plastic Properties of an Anisotropic Damage Model by Micro-Hardness Measurements
,”
Int. J. Damage Mech.
,
22
(
8
), pp. 1089–1108.
15.
Nguyen
,
G. D.
,
Korsunsky
,
A. M.
, and
Belnoue
,
J. P.-H.
,
2015
, “
A Nonlocal Coupled Damage-Plasticity Model for the Analysis of Ductile Failure
,”
Int. J. Plast.
,
64
, pp.
56
75
.
16.
Voyiadjis
,
G. Z.
, and
Park
,
T.
,
1997
, “
Anisotropic Damage Effect Tensors for the Symmetrization of the Effective Stress Tensor
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
106
110
.
17.
Park
,
T.
, and
Voyiadjis
,
G. Z.
,
1998
, “
Kinematic Description of Damage
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
93
98
.
18.
Wang
,
T.-J.
,
1992
, “
Unified CDM Model and Local Criterion for Ductile Fracture—II: Ductile Fracture Local Criterion Based on the CDM Model
,”
Eng. Fract. Mech.
,
42
(
1
), pp.
185
193
.
19.
Chandrakanth
,
S.
, and
Pandey
,
P. C.
,
1993
, “
A New Ductile Damage Evolution Model
,”
Int. J. Fract.
,
60
(
4
), pp.
R73
R76
.http://www.nptel.ac.in/courses/105108072/mod06/hyperlink-7.pdf
20.
Chandrakanth
,
S.
, and
Pandey
,
P. C.
,
1995
, “
An Isotropic Damage Model for Ductile Material
,”
Eng. Fract. Mech.
,
50
(
4
), pp.
457
465
.
21.
Thakkar
,
B. K.
, and
Pandey
,
P. C.
,
2007
, “
A High-Order Isotropic Continuum Damage Evolution Model
,”
Int. J. Damage Mech.
,
16
(
4
), pp.
403
426
.
22.
Kumar
,
M.
, and
Dixit
,
P.
,
2014
, “
A Nonlinear Ductile Damage Growth Law
,”
Int. J. Damage Mech.
,
24
(
7
), pp. 1070–1085.
23.
Chow
,
C. L.
, and
Wang
,
J.
,
1987
, “
An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture
,”
Eng. Fract. Mech.
,
27
(
5
), pp.
547
558
.
24.
Gao
,
X.
,
Zhang
,
T.
,
Zhou
,
J.
,
Graham
,
S. M.
,
Hayden
,
M.
, and
Roe
,
C.
,
2011
, “
On Stress-State Dependent Plasticity Modeling: Significance of the Hydrostatic Stress, the Third Invariant of Stress Deviator and the Non-Associated Flow Rule
,”
Int. J. Plast.
,
27
(
2
), pp.
217
231
.
25.
Bonora
,
N.
,
Gentile
,
D.
, and
Pirondi
,
A.
,
2004
, “
Identification of the Parameters of a Nonlinear Continuum Damage Mechanics Model for Ductile Failure in Metals
,”
J. Strain Anal. Eng. Des.
,
39
(
6
), pp.
639
651
.
26.
Bonora
,
N.
,
Gentile
,
D.
,
Pirondi
,
A.
, and
Newaz
,
G.
,
2005
, “
Ductile Damage Evolution Under Triaxial State of Stress: Theory and Experiments
,”
Int. J. Plast.
,
21
(
5
), pp.
981
1007
.
27.
Hayakawa
,
K.
, and
Murakami
,
S.
,
1997
, “
Thermodynamical Modeling of Elastic-Plastic Damage and Experimental Validation of Damage Potential
,”
Int. J. Damage Mech.
,
6
(
4
), pp.
333
363
.
28.
Hayakawa
,
K.
, and
Murakami
,
S.
,
1998
, “
Space of Damage Conjugate Force and Damage Potential of Elastic-Plastic-Damage Materials
,”
Stud. Appl. Mech.
,
46
, pp.
27
44
.
29.
Murakami
,
S.
,
Hayakawa
,
K.
, and
Liu
,
Y.
,
1998
, “
Damage Evolution and Damage Surface of Elastic-Plastic-Damage Materials Under Multiaxial Loading
,”
Int. J. Damage Mech.
,
7
(
2
), p.
103
.
30.
Brünig
,
M.
,
2003
, “
An Anisotropic Ductile Damage Model Based on Irreversible Thermodynamics
,”
Int. J. Plast.
,
19
(
10
), pp.
1679
1713
.
31.
Brünig
,
M.
,
Gerke
,
S.
, and
Brenner
,
D.
,
2015
, “
Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria
,”
Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading
,
Springer
,
Cham, Switzerland
, pp.
17
33
.
32.
Chow
,
C. L.
, and
Wang
,
J.
,
1988
, “
Ductile Fracture Characterization With an Anisotropic Continuum Damage Theory
,”
Eng. Fract. Mech.
,
30
(
5
), pp.
547
563
.
33.
Bielski
,
J.
,
Skrzypek
,
J. J.
, and
Kuna-Ciskal
,
H.
,
2006
, “
Implementation of a Model of Coupled Elastic-Plastic Unilateral Damage Material to Finite Element Code
,”
Int. J. Damage Mech.
,
15
(
1
), pp.
5
39
.
34.
Sidoroff
,
F.
,
1981
, “
Description of Anisotropic Damage Application to Elasticity
,”
Physical Non-Linearities in Structural Analysis
,
Springer
, Berlin, pp.
237
244
.
35.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
, “
The Non-Linear Field Theories of Mechanics
,”
The Non-Linear Field Theories of Mechanics
,
Springer
, Berlin, pp.
1
579
.
36.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
, Vol.
7
,
Springer-Verlag
, New York.
37.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2014
,
Nonlinear Finite Elements for Continua and Structures
, 2nd ed.,
Wiley
, Chichester, UK.
38.
Murakami
,
S.
,
2012
,
Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture
, Vol.
185
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
39.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2011
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
, Chichester, UK.
40.
Le Roy
,
G.
,
Embury
,
J. D.
,
Edwards
,
G.
, and
Ashby
,
M. F.
,
1981
, “
A Model of Ductile Fracture Based on the Nucleation and Growth of Voids
,”
Acta Metall.
,
29
(
8
), pp.
1509
1522
.
41.
Mkaddem
,
A.
,
Gassara
,
F.
, and
Hambli
,
R.
,
2006
, “
A New Procedure Using the Microhardness Technique for Sheet Material Damage Characterisation
,”
J. Mater. Process. Technol.
,
178
(
1–3
), pp.
111
118
.
You do not currently have access to this content.