This paper presents a study of hydrogen diffusion for a spiral weld pipe considering the effect of weld residual stress. The results show that the hydrogen mainly gathers at heat-affected zone (HAZ). HAZ is the weakest zone where hydrogen-induced cracking (HIC) occurs. The effect of helix angle on the hydrogen diffusion is also discussed. It shows that different helix angles generate different hydrogen concentrations. As the helix angle increases, both the hydrogen concentration and residual stresses decrease. As the helix angle increases from 40 deg to 50 deg, the equivalent pressure stresses reduce a little, resulting in the change of hydrogen concentration being small. The smaller the helix angle is, the larger the diffusion rate is. The most suitable helix angle should be optimized at 40–50 deg.

References

References
1.
Mohtadi-Bonab
,
M. A.
,
Szpunar
,
J. A.
,
Collins
,
L.
, and
Stankievech
,
R.
,
2014
, “
Evaluation of Hydrogen Induced Cracking Behavior of API X70 Pipeline Steel at Different Heat Treatments
,”
Int. J. Hydrogen Energy
,
39
(11), pp.
6076
6088
.
2.
Nasim
,
K.
,
Arif
,
A. F. M.
,
Al-Nassar
,
Y. N.
, and
Anis
,
M.
,
2015
, “
Investigation of Residual Stress Development in Spiral Welded Pipe
,”
J. Mater. Process Technol.
,
215
, pp.
225
238
.
3.
Winzer
,
N.
,
Rott
,
O.
,
Thiessen
,
R.
,
Thomas
,
I.
,
Mraczek
,
K.
,
Höche
,
T.
, and
Mrovec
,
M.
,
2016
, “
Hydrogen Diffusion and Trapping in Ti-Modified Advanced High Strength Steels
,”
Mater. Des.
,
92
, pp.
450
461
.
4.
Shi
,
X.
,
Yan
,
W.
,
Wang
,
W.
,
Shan
,
Y.
, and
Yang
,
K.
,
2016
, “
Novel Cu-Bearing High-Strength Pipeline Steels With Excellent Resistance to Hydrogen-Induced Cracking
,”
Mater. Des.
,
92
, pp.
300
305
.
5.
Masoumi
,
M.
,
Santos
,
L. P.
,
Bastos
,
I. N.
,
Tavares
,
S. S.
,
da Silva
,
M. J.
, and
de Abreu
,
H. F.
,
2016
, “
Texture and Grain Boundary Study in High Strength Fe–18Ni–Co Steel Related to Hydrogen Embrittlement
,”
Mater. Des.
,
91
, pp.
90
97
.
6.
Mohtadi-Bonab
,
M. A.
,
Eskandari
,
M.
,
Rahman
,
K. M. M.
,
Ouellet
,
R.
, and
Szpunar
,
J. A.
,
2016
, “
An Extensive Study of Hydrogen-Induced Cracking Susceptibility in an API X60 Sour Service Pipeline Steel
,”
Int. J. Hydrogen Energy
,
41
(
7
), pp.
4185
4197
.
7.
Yan
,
Y.
,
Yan
,
Y.
,
He
,
Y.
,
Li
,
J.
,
Su
,
Y.
, and
Qiao
,
L.
,
2015
, “
Hydrogen-Induced Cracking Mechanism of Precipitation Strengthened Austenitic Stainless Steel Weldment
,”
Int. J. Hydrogen Energy
,
40
(
5
), pp.
2404
2414
.
8.
Zhao
,
W.
,
Zhang
,
T.
,
Zhao
,
Y.
,
Sun
,
J.
, and
Wang
,
Y.
,
2016
, “
Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint Under High-Pressure Coal Gas Environment
,”
Corros. Sci.
,
111
, pp.
84
97
.
9.
Rogante
,
M.
,
Battistella
,
P.
, and
Cesari
,
F.
,
2006
, “
Hydrogen Interaction and Stress-Corrosion in Hydrocarbon Storage Vessel and Pipeline Weldings
,”
Int. J. Hydrogen Energy
,
31
(
5
), pp.
597
601
.
10.
Niwa
,
M.
,
Shikama
,
T.
, and
Yonezu
,
A.
,
2015
, “
Mechanism of Hydrogen Embrittlement Cracking Produced by Residual Stress From Indentation Impression
,”
Mater. Sci. Eng. A
,
624
, pp.
52
61
.
11.
Takakuwa
,
O.
,
Nishikawa
,
M.
, and
Soyama
,
H.
,
2012
, “
Numerical Simulation of the Effects of Residual Stress on the Concentration of Hydrogen Around a Crack Tip
,”
Surf. Coat. Technol.
,
206
(11–12), pp.
2892
2898
.
12.
Arif
,
A. F. M.
,
Al-Omari
,
A. S.
,
Yilbas
,
B. S.
, and
Al-Nassar
,
Y. N.
,
2011
, “
Thermal Stress Analysis of Spiral Laser-Welded Tube
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
675
687
.
13.
Leggatt
,
R. H.
,
2008
, “
Residual Stresses in Welded Structures
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
144
151
.
14.
Xu
,
S.
,
Wei
,
R.
,
Zhao
,
Y.
,
Wang
,
C.
, and
Zhang
,
C.
,
2015
, “
Using Autofrettage Technology to Decrease Stresses in a Girth Welded Joint of a High Pressure Hydrogen Tank
,”
Int. J. Hydrogen Energy
,
40
(
25
), pp.
8110
8121
.
15.
Xu
,
S.
, and
Wang
,
W.
,
2013
, “
Numerical Investigation on Weld Residual Stresses in Tube to Tube Sheet Joint of a Heat Exchanger
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
37
44
.
16.
Toribio
,
J.
,
Kharin
,
V.
,
Lorenzo
,
M.
, and
Vergara
,
D.
,
2011
, “
Role of Drawing-Induced Residual Stresses and Strains in the Hydrogen Embrittlement Susceptibility of Prestressing Steels
,”
Corros. Sci.
,
53
(
10
), pp.
3346
3355
.
17.
Xuan
,
F. Z.
,
Shao
,
S. S.
,
Wang
,
Z.
, and
Tu
,
S. T.
,
2010
, “
Influence of Residual Stress on Diffusion-Induced Bending in Bilayered Microcantilever Sensors
,”
Thin Solid Films
,
518
(
15
), pp.
4345
4350
.
18.
Yonezu
,
A.
,
Arino
,
M.
,
Kondo
,
T.
,
Hirakata
,
H.
, and
Minoshima
,
K.
,
2010
, “
On Hydrogen-Induced Vickers Indentation Cracking in High-Strength Steel
,”
Mech. Res. Commun.
,
37
(
2
), pp.
230
234
.
19.
Yonezu
,
A.
,
Hara
,
T.
,
Kondo
,
T.
,
Hirakata
,
H.
, and
Minoshima
,
K.
,
2012
, “
Evaluation of Threshold Stress Intensity Factor of Hydrogen Embrittlement Cracking by Indentation Testing
,”
Mater. Sci. Eng. A
,
531
, pp.
147
154
.
20.
Ilin
,
D. N.
,
Saintier
,
N.
,
Olive
,
J. M.
,
Abgrall
,
R.
, and
Aubert
,
I.
,
2014
, “
Simulation of Hydrogen Diffusion Affected by Stress-Strain Heterogeneity in Polycrystalline Stainless Steel
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2418
2422
.
21.
Mouanga
,
M.
,
Berçot
,
P.
, and
Takadoum
,
J.
,
2010
, “
Effect of Residual Stresses on Hydrogen Permeation in Iron
,”
Corros. Sci.
,
52
(
6
), pp.
2010
2014
.
22.
Aslan
,
O.
,
2015
, “
Numerical Modeling of Hydrogen Diffusion in Metals Accounting for Large Deformations
,”
Int. J. Hydrogen Energy
,
40
(
44
), pp.
15227
15235
.
23.
Gou
,
R.
,
Zhang
,
Y.
,
Xu
,
X.
,
Sun
,
L.
, and
Yang
,
Y.
,
2011
, “
Residual Stress Measurement of New and In-Service X70 Pipelines by X-Ray Diffraction Method
,”
Ndt&E Int.
,
44
(
5
), pp.
387
393
.
24.
Yazdipour
,
N.
,
Haq
,
A. J.
,
Muzaka
,
K.
, and
Pereloma
,
E. V.
,
2012
, “
2D Modelling of the Effect of Grain Size on Hydrogen Diffusion in X70 Steel
,”
Comp. Mater. Sci.
,
56
, pp.
49
57
.
25.
Alvaro
,
A.
,
Olden
,
V.
, and
Akselsen
,
O. M.
,
2013
, “
3D Cohesive Modelling of Hydrogen Embrittlement in the Heat Affected Zone of an X70 Pipeline Steel
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7539
7549
.
26.
Alvaro
,
A.
,
Olden
,
V.
, and
Akselsen
,
O. M.
,
2014
, “
3D Cohesive Modelling of Hydrogen Embrittlement in the Heat Affected Zone of an X70 Pipeline Steel—Part II
,”
Int. J. Hydrogen Energy
,
39
(
7
), pp.
3528
3541
.
27.
Alvaro
,
A.
,
Olden
,
V.
,
Macadre
,
A.
, and
Akselsen
,
O. M.
,
2014
, “
Hydrogen Embrittlement Susceptibility of a Weld Simulated X70 Heat Affected Zone Under H2 Pressure
,”
Mater. Sci. Eng. A
,
597
, pp.
29
36
.
28.
Mohtadi-Bonab
,
M. A.
,
Szpunar
,
J. A.
,
Basu
,
R.
, and
Eskandari
,
M.
,
2015
, “
The Mechanism of Failure by Hydrogen Induced Cracking in an Acidic Environment for API 5L X70 Pipeline Steel
,”
Int. J. Hydrogen Energy
,
40
(
2
), pp.
1096
1107
.
29.
Yan
,
C.
,
Liu
,
C.
, and
Yan
,
B.
,
2014
, “
3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints
,”
Comput. Mater. Sci.
,
83
, pp.
158
163
.
30.
Teng
,
T. L.
,
Fung
,
C. P.
,
Chang
,
P. H.
, and
Yang
,
W. C.
,
2001
, “
Analysis of Residual Stresses and Distortions in T-Joint Fillet Welds
,”
Int. J. Pressure Vessels Piping
,
78
(
8
), pp.
523
538
.
31.
Meng
,
Q. G.
,
Fang
,
H. Y.
,
Yang
,
J. G.
, and
Ji
,
S. D.
,
2005
, “
Analysis of Temperature and Stress Field in Al Alloy's Twin Wire Welding
,”
Theor. Appl. Fract. Mech.
,
44
(
2
), pp.
178
186
.
32.
Jiang
,
W.
,
Luo
,
Y.
,
Wang
,
B. Y.
,
Tu
,
S. T.
, and
Gong
,
J. M.
,
2014
, “
Residual Stress Reduction in the Penetration Nozzle Weld Joint by Overlay Welding
,”
Mater. Des.
,
60
, pp.
443
450
.
33.
Forouzan
,
M. R.
,
Nasiri
,
S. M.
,
Mokhtari
,
A.
,
Heidari
,
A.
, and
Golestaneh
,
S. J.
,
2012
, “
Residual Stress Prediction in Submerged Arc Welded Spiral Pipes
,”
Mater. Des.
,
33
, pp.
384
394
.
34.
ABAQUS,
2009
, “
Standard User's Manual, Version 6.10
,”
Dassault Systèmes, Waltham, MA
.
35.
Cheng
,
Y. F.
,
2007
, “
Analysis of Electrochemical Hydrogen Permeation Through X-65pipeline Steel and Its Implications on Pipeline Stress Corrosion Cracking
,”
Int. J. Hydrogen Energy
,
32
(
9
), pp.
1269
1276
.
36.
Olden
,
V.
,
Alvaro
,
A.
, and
Akselsen
,
O. M.
,
2012
, “
Hydrogen Diffusion and Hydrogen Influenced Critical Stress Intensity in an API X70 Pipeline Steel Welded Joint—Experiments and FE Simulations
,”
Int. J. Hydrogen Energy
,
37
(
15
), pp.
11474
11486
.
37.
Tang
,
J. Q.
,
Gong
,
J. M.
,
Zhang
,
X. C.
, and
Tu
,
S. T.
,
2006
, “
Comparison on the Cracking Susceptibility of Different Low Alloy Steel Weldments Exposed to the Environment Containing Wet HS
,”
Eng. Failure Anal.
,
13
(
7
), pp.
1057
1064
.
38.
Solheim
,
K. G.
, and
Solberg
,
J. K.
,
2013
, “
Hydrogen Induced Stress Cracking in Supermartensitic Stainless Steels—Stress Threshold for Coarse Grained HAZ
,”
Eng. Failure Anal.
,
32
, pp.
348
359
.
39.
Xue
,
H. B.
, and
Cheng
,
Y. F.
,
2011
, “
Characterization of Inclusions of X80 Pipeline Steel and Its Correlation With Hydrogen-Induced Cracking
,”
Corros. Sci.
,
53
(
4
), pp.
1201
1208
.
40.
Yokobori
,
A. T.
,
Chinda
,
Y.
,
Nemoto
,
T.
,
Satoh
,
K.
, and
Yamada
,
T.
,
2002
, “
The Characteristics of Hydrogen Diffusion and Concentration Around a Crack Tip Concerned With Hydrogen Embrittlement
,”
Corros. Sci.
,
44
(
3
), pp.
407
424
.
You do not currently have access to this content.