Grain boundary (GB) embrittlement by sulfur in fcc CuΣ5(012)[100] symmetrical tilt grain boundary (STGB) is simulated by first-principles calculations. The surface and grain boundary segregation energies are estimated by progressively placing solute atoms in the potential segregation sites in the boundaries. Based on the calculated segregation energies, the cohesive energy of the grain boundary is evaluated as a function of the sulfur atoms concentration. It is found that, when a two atomic layers’ concentration is attained, the cohesive energy is reduced by one order of magnitude compared to its value for the clean grain boundary.

References

References
1.
Korzhavyi
,
P. A.
,
Abrikosov
,
I. A.
, and
Johansson
,
B.
,
1999
, “
Theoretical Investigation of Sulfur Solubility in Pure Copper and Dilute Copper-Based Alloys
,”
Acta Mater.
,
47
(
5
), pp.
1417
1424
.
2.
Moya
,
F.
,
Moya-Gontier
,
G. E.
, and
Cabané-Brouty
,
F.
,
1970
, “
Sulfur Diffusion in Copper: Small Penetration Curves
,”
Phys. Status Solidi A
,
2
(
1
), pp.
101
108
.
3.
Moya-Gontier
,
G. E.
, and
Moya
,
F.
,
1973
, “
Influence de la Ségregation aux Joints sur la Diffusion Intergranulaire du Soufre Dans le Cuivre
,”
Acta Metall.
,
21
(
5
), pp.
701
708
.
4.
Sun
,
Z.
,
Laitem
,
C.
, and
Vincent
,
A.
,
2008
, “
Dynamic Embrittlement at Intermediate Temperature in a Cu–Ni–Si Alloy
,”
Mater. Sci. Eng. A
,
477
(1–2), pp.
145
152
.
5.
McMahon
,
C. J.
,
2004
, “
Brittle Fracture at Grain Boundaries
,”
Interface Sci.
,
12
(2–3), pp.
141
146
.
6.
McMahon
,
C. J.
,
Pfaendtner
,
J. A.
, and
Muthiah
,
R. C.
,
1995
, “
Quasi-Static Intergranular Brittle Fracture: Dynamic Embrittlement
,”
Czech. J. Phys.
,
45
(
11
), pp.
965
978
.
7.
Benabou
,
L.
, and
Sun
,
Z.
,
2014
, “
Homogenization Scheme for Brittle Intergranular Decohesion in Polycrystalline Aggregates
,”
Mech. Res. Commun.
,
55
, pp.
114
119
.
8.
Benabou
,
L.
, and
Sun
,
Z.
,
2015
, “
Analytical Homogenization Modeling and Computational Simulation of Intergranular Fracture in Polycrystals
,”
Int. J. Fract.
,
193
(
1
), pp.
59
75
.
9.
Sofronis
,
P.
,
Liang
,
Y.
, and
Aravas
,
N.
,
2001
, “
Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys
,”
Eur. J. Mech. A
,
20
(
6
), pp.
857
872
.
10.
Sun
,
Z.
,
Benabou
,
L.
, and
Xue
,
H.
,
2016
, “
Numerical Modelling and Simulation of Intergranular Fracture Due to Dynamic Embrittlement for a Cu–Ni–Si Alloy
,”
Mech. Res. Commun.
,
75
, pp.
81
88
.
11.
Yamaguchi
,
M.
,
Shiga
,
M.
, and
Kaburaki
,
H.
,
2006
, “
Grain Boundary Decohesion by Sulfur Segregation in Ferromagnetic Iron and Nickel—A First-Principles Study
,”
Mater. Trans.
,
47
(
11
), pp.
2682
2689
.
12.
Tschopp
,
M. A.
,
Coleman
,
S. P.
, and
McDowell
,
D. L.
,
2015
, “
Symmetric and Asymmetric Tilt Grain Boundary Structure and Energy in Cu and Al (and Transferability to Other fcc Metals)
,”
Integr. Mater. Manuf. Innov.
,
4
(
11
), pp. 1–14.
13.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
,
2001
, “
Structural Stability and Lattice Defects in Copper: Ab-Initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
,
63
(
22
), p.
224106
.
14.
Sellers
,
S.
,
Schultz
,
A. J.
,
Basaran
,
C.
, and
Kofke
,
D. A.
,
2010
, “
Atomistic Modeling of β-Sn Surface Energies and Adatom Diffusivity
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4402
4407
.
15.
Rice
,
J. R.
, and
Wang
,
J. S.
,
1989
, “
Embrittlement of Interfaces by Solute Segregation
,”
Mater. Sci. Eng. A: Struct.
,
107
, pp.
23
40
.
16.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set
,”
Phys. Rev. B
,
54
(
16
), p.
11169
.
17.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), p.
3865
.
18.
Kresse
,
G.
, and
Joubert
,
D.
,
1999
, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Phys. Rev. B
,
59
(
3
), p.
1758
.
19.
Yamaguchi
,
M.
,
Shiga
,
M.
, and
Kaburaki
,
H.
,
2005
, “
Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System
,”
Science
,
307
(
5708
), pp.
393
397
.
20.
McLean
,
D.
,
1957
,
Grain Boundaries in Metals
,
Oxford University Press
,
London
.
21.
Serebrinsky
,
S.
,
Carter
,
E. A.
, and
Ortiz
,
M.
,
2004
, “
A Quantum-Mechanically Informed Continuum Model of Hydrogen Embrittlement
,”
J. Mech. Phys. Solids
,
52
(
10
), pp.
2403
2430
.
22.
Rimoli
,
J. J.
, and
Ortiz
,
M.
,
2010
, “
A Three-Dimensional Multiscale Model of Intergranular Hydrogen-Assisted Cracking
,”
Philos. Mag.
,
90
(
21
), pp.
2939
2963
.
You do not currently have access to this content.