Several experimental studies have revealed that the size-dependent deformation in polymers at nano- to micro-meter length scales is significantly associated with elastic deformation. Such size-dependent deformation in polymers is expected to affect the in-plane macroscopic elastic properties of cellular polymers with micrometer-sized cells. A finite element (FE) formulation of a higher-order elasticity theory is applied to evaluate the in-plane macroscopic elastic properties of different polymer cellular geometries by varying the cell size from the macroscopic to micron length scale. For a given relative density of the cellular solid, a reduction in the cell size from the macroscopic to micron length scale resulted in geometry-specific variations in the in-plane macroscopic elastic moduli and Poisson's ratios. Furthermore, an increase in the relative density for a given cell size revealed variations in the size dependence of the elastic properties. The size dependence of elastic properties is interpreted based on the influence of rotation gradients with varying cell size of the cellular solid. Also, the evaluated size-dependent elastic properties are compared with the available analytical solutions from the literature.

References

References
1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
2.
Jang
,
J.-H.
,
Ullal
,
C. K.
,
Choi
,
T.
,
Lemieux
,
M. C.
,
Tsukruk
,
V. V.
, and
Thomas
,
E. L.
,
2006
, “
3D Polymer Microframes That Exploit Length-Scale-Dependent Mechanical Behavior
,”
Adv. Mater.
,
18
(
16
), pp.
2123
2127
.
3.
Xu
,
B.
,
Arias
,
F.
,
Brittain
,
S. T.
,
Zhao
,
X.-M.
,
Grzybowski
,
B.
,
Torquato
,
S.
, and
Whitesides
,
G. M.
,
1999
, “
Making Negative Poisson's Ratio Microstructures by Soft Lithography
,”
Adv. Mater.
,
11
(
14
), pp.
1186
1189
.
4.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Sol.
,
51
(
8
), pp.
1477
1508
.
5.
Chandrashekar
,
G.
, and
Han
,
C.-S.
,
2016
, “
Length Scale Effects in Epoxy: The Dependence of Elastic Moduli Measurements on Spherical Indenter Tip Radius
,”
Polym. Test.
,
53
, pp.
227
233
.
6.
Alisafaei
,
F.
,
Han
,
C.-S.
, and
Lakhera
,
N.
,
2014
, “
Characterization of Indentation Size Effects in Epoxy
,”
Polym. Test.
,
40
, pp.
70
78
.
7.
Chandrashekar
,
G.
,
Alisafaei
,
F.
, and
Han
,
C.-S.
,
2015
, “
Length Scale Dependent Deformation in Natural Rubber
,”
J. Appl. Polym. Sci.
,
132
(
43
), p.
42683
.
8.
Alisafaei
,
F.
,
Han
,
C.-S.
, and
Sanei
,
S. H. R.
,
2013
, “
On the Time and Indentation Depth Dependence of Hardness, Dissipation and Stiffness in Polydimethylsiloxane
,”
Polym. Test.
,
32
(
7
), pp.
1220
1228
.
9.
Han
,
C.-S.
,
Sanei
,
S. H. R.
, and
Alisafaei
,
F.
,
2015
, “
On the Origin of Indentation Size Effects and Depth Dependent Mechanical Properties of Elastic Polymers
,”
J. Polym. Eng.
,
36
(
1
), pp.
103
111
.https://doi.org/10.1515/polyeng-2015-0030
10.
Alisafaei
,
F.
, and
Han
,
C.-S.
,
2015
, “
Indentation Depth Dependent Mechanical Behavior in Polymers
,”
Adv. Condens. Matter Phys.
,
2015
, p.
391579
.
11.
Alisafaei
,
F.
,
Han
,
C.-S.
, and
Garg
,
N.
,
2016
, “
On Couple Stress Elasto-Plastic Constitutive Frameworks for Glassy Polymers
,”
Int. J. Plast.
,
77
, pp.
30
53
.
12.
Han
,
C.-S.
, and
Nikolov
,
S.
,
2007
, “
Indentation Size Effects in Polymers and Related Rotation Gradients
,”
J. Mater. Res.
,
22
(
6
), pp.
1662
1672
.
13.
Nikolov
,
S.
,
Han
,
C.-S.
, and
Raabe
,
D.
,
2007
, “
On the Origin of Size Effects in Small-Strain Elasticity of Solid Polymers
,”
Int. J. Sol. Struct.
,
44
(
5
), pp.
1582
1592
.
14.
Han
,
C.-S.
,
2010
, “
Influence of the Molecular Structure on Indentation Size Effect in Polymers
,”
Mater. Sci. Eng. A
,
527
(
3
), pp.
619
624
.
15.
Lam
,
D. C. C.
, and
Chong
,
A. C. M.
,
1999
, “
Indentation Model and Strain Gradient Plasticity Law for Glassy Polymers
,”
J. Mater. Res.
,
14
(
9
), pp.
3784
3788
.
16.
Swaddiwudhipong
,
S.
,
Poh
,
L. H.
,
Hua
,
J.
,
Liu
,
Z. S.
, and
Tho
,
K. K.
,
2005
, “
Modeling Nano-Indentation Tests of Glassy Polymers Using Finite Elements With Strain Gradient Plasticity
,”
Mater. Sci. Eng. A
,
404
(
1–2
), pp.
179
187
.
17.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Sol.
,
46
(
3
), pp.
411
425
.
18.
Reddy
,
J. N.
,
2007
, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
(
2–8
), pp.
288
307
.
19.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Sol.
,
56
(
12
), pp.
3379
3391
.
20.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2006
, “
Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2355
2359
.
21.
Garg
,
N.
, and
Han
,
C.-S.
,
2013
, “
A Penalty Finite Element Approach for Couple Stress Elasticity
,”
Comp. Mech.
,
52
(
3
), pp.
709
720
.
22.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Sol. Struct.
,
39
(
10
), pp.
2731
2743
.
23.
Liebold
,
C.
, and
Müller
,
W. H.
,
2016
, “
Comparison of Gradient Elasticity Models for the Bending of Micromaterials
,”
Comput. Mater. Science
,
116
, pp.
52
61
.
24.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
,
1964
, “
Nonlinear Theory of Simple Micro-Elastic Solids-I
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
189
203
.
25.
Darrall
,
B. T.
,
Dargush
,
G. F.
, and
Hadjesfandiari
,
A. R.
,
2014
, “
Finite Element Lagrange Multiplier Formulation for Size-Dependent Skew-Symmetric Couple-Stress Planar Elasticity
,”
Acta Mech.
,
225
(
1
), pp.
195
212
.
26.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids. Struct.
,
48
(
18
), pp.
2496
2510
.
27.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
.
28.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.
29.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2015
, “
Foundations of Consistent Couple Stress Theory
,” e-print
arXiv:1509.06299
.https://arxiv.org/abs/1509.06299
30.
Hadjesfandiari
,
A. R.
,
Hadjesfandiari
,
A.
, and
Dargush
,
G. F.
,
2016
, “
Pure Plate Bending in Couple Stress Theories
,” e-print
arXiv:1606.02954
.https://arxiv.org/abs/1606.02954
31.
Neff
,
P.
,
Munch.
,
I.
,
Ghiba.
,
I.-D.
, and
Madeo
,
A.
,
2015
, “
On Some Fundamental Misunderstandings in the Indeterminate Couple Stress Model. A Comment on Recent Papers of A. R. Hadjesfandiari and G. F. Dargush
,”
Int. J. Solids. Struct.
,
81
, pp.
233
243
.
32.
Zhu
,
H. X.
,
2010
, “
Size-Dependent Elastic Properties of Micro-and Nano-Honeycombs
,”
J. Mech. Phys. Sol.
,
58
(
5
), pp.
696
709
.
33.
Zhu
,
H. X.
, and
Chen
,
C. Y.
,
2011
, “
Combined Effects of Relative Density and Material Distribution on the Mechanical Properties of Metallic Honeycombs
,”
Mech. Mater.
,
43
(
5
), pp.
276
286
.
34.
Zhu
,
H. X.
,
Yan
,
L. B.
,
Zhang
,
R.
, and
Qiu
,
X. M.
,
2012
, “
Size-Dependent and Tunable Elastic Properties of Hierarchical Honeycombs With Regular Square and Equilateral Triangular Cells
,”
Acta Mater.
,
60
(
12
), pp.
4927
4939
.
35.
Wang
,
J.
, and
Lam
,
D. C. C.
,
2009
, “
Model and Analysis of Size-Stiffening in Nanoporous Cellular Solids
,”
J. Mater. Sci.
,
44
(
4
), pp.
985
991
.
36.
Askes
,
H.
, and
Aifantis
,
E. C.
,
2011
, “
Comments on ‘Model and Analysis of Size-Stiffening in Nanoporous Cellular Solids' by Wang and Lam
,”
J. Mater. Sci.
,
46
(
18
), pp.
6158
6161
.
37.
Kim
,
H. S.
, and
Al-Hassani
,
S. T. S.
,
2003
, “
Effective Elastic Constants of Two-Dimensional Cellular Materials With Deep and Thick Cell Walls
,”
Int. J. Mech. Sci.
,
45
(
12
), pp.
1999
2016
.
38.
Garg
,
N.
,
Han
,
C.-S.
, and
Alisafaei
,
F.
,
2016
, “
Length Scale Dependence in Elastomers—Comparison of Indentation Experiments With Numerical Simulations
,”
Polymer
,
98
, pp.
201
209
.
39.
Priestley
,
R. D.
,
Ellison
,
C. J.
,
Broadbelt
,
L. J.
, and
Torkelson
,
J. M.
,
2005
, “
Structural Relaxation of Polymer Glasses at Surfaces, Interfaces, and in Between
,”
Science
,
309
(
5733
), pp.
456
459
.
40.
Sharp
,
J. S.
,
Teichroeb
,
J. H.
, and
Forrest
,
J. A.
,
2004
, “
The Properties of Free Polymer Surfaces and Their Influence on the Glass Transition Temperature of Thin Polystyrene Films
,”
Eur. Phys. J. E
,
15
(
4
), pp.
473
487
.
41.
Fakhraai
,
Z.
, and
Forrest
,
J. A.
,
2008
, “
Measuring the Surface Dynamics of Glassy Polymers
,”
Science
,
319
(
5863
), pp.
600
604
.
42.
Teichroeb
,
J. H.
, and
Forrest
,
J. A.
,
2003
, “
Direct Imaging of Nanoparticle Embedding to Probe Viscoelasticity of Polymer Surfaces
,”
Phys. Rev. Lett.
,
91
(
1
), p.
016104
.
You do not currently have access to this content.