The creep behaviors of TA2 and R60702 at low and intermediate temperature were presented and discussed in this paper. Experimental results indicated that an apparent threshold stress was exhibited in the creep deformation of R60702. Meanwhile, the primary creep phase was found as the main pattern in the room temperature creep behavior of TA2. Compared with the exponential law, the power law has been proved to be a proper constitutive model in the description of primary creep phase. It also showed that θ projection method had its significant advantage in the evaluation of accelerated creep stage. Thus, a composite model which combined power law with θ projection method was applied in the creep curves evaluation at low and intermediate temperature. Based on the multiaxial creep deformation results, the model was modified and discussed. A linear relationship existed between composite model parameters and applied load. Finally, the creep life of TA2 and R60702 could be accurately predicted by the composite model, and it is suitable for the application in low and intermediate temperature creep life analysis.

References

References
1.
Warren
,
A. D.
,
Griffiths
,
I. J.
,
Harniman
,
R. L.
,
Flewitt
,
P. E. J.
, and
Scott
,
T. B.
,
2015
, “
The Role of Ferrite in Type 316H Austenitic Stainless Steels on the Susceptibility to Creep Cavitation
,”
Mater. Sci. Eng.
,
635
(
21
), pp.
59
69
.
2.
Dyson
,
C. C.
,
Sun
,
W.
,
Hyde
,
C. J.
,
Brett
,
S. J.
, and
Hyde
,
T. H.
,
2016
, “
Use of Small Specimen Creep Data in Component Life Management: A Review
,”
Mater. Sci. Technol.
,
32
(
15
), pp.
1567
1581
.
3.
Borjali
,
S.
,
Allahkaram
,
S. R.
, and
Khosravi
,
H.
,
2012
, “
Effects of Working Temperature and Carbon Diffusion on the Microstructure of High Pressure Heat-Resistant Stainless Steel Tubes Used in Pyrolysis Furnaces During Service Condition
,”
Mater. Des.
,
34
, pp.
65
73
.
4.
Kwon
,
O.
,
Thomas
,
C. W.
, and
Knowles
,
D.
,
2004
, “
Multiaxial Stress Rupture Behaviour and Stress-State Sensitivity of Creep Damage Distribution in Durehete 1055 and 2.25Cr1Mo Steel
,”
Int. J. Pressure Vessels Piping
,
81
(
6
), pp.
535
542
.
5.
Anderson
,
P.
,
Bellgardt
,
T.
, and
Jones
,
F. L.
,
2003
, “
Creep Deformation in a Modified 9Cr-1 Mo Steel
,”
Mater. Sci. Technol.
,
19
(
2
), pp.
207
213
.
6.
Jiang
,
X. J.
,
Zhou
,
Y. K.
,
Feng
,
Z. H.
,
Xia
,
C. Q.
,
Tan
,
C. L.
,
Liang
,
S. X.
,
Zhang
,
X. Y.
,
Ma
,
M. Z.
, and
Liu
,
R. P.
,
2015
, “
Influence of Zr Content on β-Phase Stability in α-Type Ti–Al Alloys
,”
Mater. Sci. Eng.
,
639
(
15
), pp.
407
411
.
7.
Kassner
,
M. E.
, and
Geantil
,
P.
,
2011
, “
Ambient Temperature Creep of Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
133
(
2
), p. 021012.
8.
Peng
,
J.
,
Zhou
,
C. Y.
,
Dai
,
Q.
, and
He
,
X. H.
,
2014
, “
The Temperature and Stress Dependent Primary Creep of Cp-Ti at Low and Intermediate Temperature
,”
Mater. Sci. Eng.
,
611
, pp.
123
135
.
9.
Matsunaga
,
T.
,
Takahashi
,
K.
,
Kameyama
,
T.
, and
Sato
,
E.
,
2009
, “
Relaxation Mechanisms at Grain Boundaries for Ambient-Temperature Creep of H.C.P. Metals
,”
Mater. Sci. Eng.
,
510–511
, pp.
356
358
.
10.
Tanaka
,
H.
,
Yamada
,
T.
,
Sato
,
E.
, and
Jimbo
,
I.
,
2006
, “
Distinguishing the Ambient-Temperature Creep Region in a Deformation Mechanism Map of Annealed Cp-Ti
,”
Scr. Mater.
,
54
(
1
), pp.
121
124
.
11.
Kameyama
,
T.
,
Matsunaga
,
T.
,
Sato
,
E.
, and
Kuribayashi
,
K.
,
2009
, “
Suppression of Ambient-Temperature Creep in CP-Ti by Cold-Rolling
,”
Mater. Sci. Eng.
,
510–511
, pp.
364
367
.
12.
Laha
,
K.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
1990
, “
Creep Behavior of Post-Weld Heat Treated 2.25Cr1Mo Ferritic Steel Base, Weld Metal and Weldments
,”
Mater. Sci. Eng.
,
129
(
2
), pp.
183
195
.
13.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long and Short-Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst. Jpn.
,
179
(
12
), pp.
105
120
.
14.
Evans
,
R. W.
,
Parker
,
J. D.
, and
Wilshire
,
B.
,
1982
, “
An Extrapolation Procedure for Long-Term Creep Strain and Creep Life Prediction With Special Reference to 0.5Cr0.5Mo0.25V Ferritic Steels
,”
Recent Advances in Creep and Fracture of Engineering Materials and Structures
, Pineridge Press, Swansea, UK, pp.
135
184
.
15.
Evans
,
R. W.
,
2000
, “
A Constitutive Model for the High-Temperature Creep of Particle-Hardened Alloys Based on the θ Projection Method
,”
Proc. R. Soc. London Ser. A
,
456
(
1996
), pp.
835
868
.
16.
Zhao
,
Y. P.
,
Gong
,
J. M.
,
Yong
,
J.
,
Wang
,
X. W.
,
Shen
,
L. M.
, and
Li
,
Q. N.
,
2016
, “
Creep Behaviours of Cr25Ni35Nb and Cr35Ni45Nb Alloys Predicted by Modified Theta Method
,”
Mater. Sci. Eng.
,
649
(
1
), pp.
1
8
.
17.
Jiang
,
F.
,
Li
,
P.
,
Cheng
,
C. Q.
,
Liu
,
C. H.
, and
Zhao
,
J.
,
2015
, “
Comparative Analysis of Creep Behavior Prediction of Heat Resistant Steel Based on Theta Projection and Composite Model
,”
J. Mater. Eng.
,
43
(
7
), pp.
87
92
.
18.
Li
,
X.
,
Chen
,
G.
,
Wang
,
L.
,
Mei
,
Y. H.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2013
, “
Creep Properties of Low-Temperature Sintered Nano-Silver Lap Shear Joints
,”
Mater. Sci. Eng.
,
579
(
1
), pp.
108
113
.
19.
Law
,
M.
,
Payten
,
W.
, and
Snowden
,
K.
,
1998
, “
Finite Element Analysis of Creep Using Theta Project Data
,”
Int. J. Pressure Vessels Piping
,
75
(
5
), pp.
437
442
.
20.
Kim
,
W. G.
,
Kim
,
S. H.
, and
Lee
,
C. B.
,
2011
, “
Long-Term Creep Characterization of Gr. 91 Steel by Modified Creep Constitutive Equations
,”
Met. Mater. Int.
,
17
(
3
), pp.
497
504
.
21.
Yang
,
Z.
, and
Wang
,
Z.
,
2002
, “
Research on Small Punch Creep Test-Analysis of Creep Stress
,”
Pressure Vessel Technol.
,
19
(
9
), pp.
5
8
.
22.
Hyde
,
T. H.
,
Stoyanov
,
M.
,
Sun
,
W.
, and
Hyde
,
C. J.
,
2010
, “
On the Interpretation of Results From Small Punch Creep Tests
,”
J. Strain Anal. Eng. Des.
,
45
(
3
), pp.
141
164
.
23.
Yang
,
Z.
, and
Wang
,
Z.
,
2003
, “
Relationship Between Strain and Central Deflection in Small Punch Creep Specimens
,”
Int. J. Pressure Vessels Piping
,
80
(
6
), pp.
397
404
.
You do not currently have access to this content.