The paper presents experimental results of microcutting brittle materials (granite). The analysis was conceived on the observed interaction between the workpiece and two tools of different shapes. Experiment was based on scratching the workpiece surface with diamond tools. Applied tools had tip radius R0.2 and R0.15 mm. The experiment determined the changes in the value of perpendicular and tangential components of the cutting force based on the geometric properties of tools, as well as the changes of the specific energy of microcutting granite (Jošanica and Bukovik types). The experiment has shown that reduction of tool radius causes reduction of the cutting force intensity and specific cutting energy. Because of its physical/mechanical properties, more energy is required for micromachining granite “Jošanica” than “Bukovik.” Based on the topography of the surface, the value of critical tool penetration depth was established, after which the brittle fracture is no longer present. For granite “Jošanica” values of critical penetration depth are 6 and 5 μm when micromachining with tools R0.2 and R0.15 mm, while for Bukovik those values are 6.5 and 5.5 μm. The paper should form the basis for understanding the phenomena which occur during microcutting brittle materials.

References

1.
Lawn
,
B. R.
, and
Swain
,
M. V.
,
1975
, “
Microfracture Beneath Point Indentations in Brittle Solids
,”
J. Mater. Sci.
,
10
(
1
), pp.
113
122
.
2.
Lawn
,
B. R.
, and
Fuller
,
E. R.
,
1975
, “
Equilibrium Penny-Like Cracks in Indentation Fracture
,”
J. Mater. Sci.
,
10
(
12
), pp.
2016
2024
.
3.
Chandra
,
A.
,
Wang
,
K.
,
Huang
,
Y.
,
Subhash
,
G.
,
Miller
,
M. H.
, and
Qu
,
W.
,
2000
, “
Role of Unloading in Machining of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
452
462
.
4.
Stojadinovic
,
S.
,
Tanovic
,
L. J.
, and
Savicevic
,
S.
,
2015
, “
Micro-Cutting Mechanisms in Silicon Nitride Ceramics Silinit R Grinding
,”
J. Chin. Soc. Mech. Eng.
,
36
(
4
), pp.
291
297
.
5.
Mladenovic
,
G.
,
Bojanic
,
P.
,
Tanovic
,
L. J.
, and
Klimenko
,
S.
,
2015
, “
Experimental Investigation of Microcutting Mechanisms in Oxide Ceramic CM332 Grinding
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034502
.
6.
Malkin
,
S.
, and
Hwang
,
T. W.
,
1996
, “
Grinding Mechanisms for Ceramics
,”
CIRP Ann.-Manuf. Technol.
,
45
(
2
), pp.
569
580
.
7.
Subhash
,
G.
,
Loukus
,
J. E.
, and
Pandit
,
S. M.
,
2002
, “
Application of Data Dependent Systems Approach for Evaluation of Fracture Modes During a Single-Grit Scratching
,”
Mech. Mater.
,
34
(
1
), pp.
25
42
.
8.
Ghosh
,
D.
,
Subhash
,
G.
,
Radhakrishnan
,
R.
, and
Sudarshan
,
T. S.
,
2008
, “
Scratch-Induced Microplasticity and Microcracking in Zirconium Diboride–Silicon Carbide Composite
,”
Acta Mater.
,
56
(
13
), pp.
3011
3022
.
9.
Anton
,
R. J.
, and
Subhash
,
G.
,
2000
, “
Dynamic Vickers Indentation of Brittle Materials
,”
Wear
,
239
(
1
), pp.
27
35
.
10.
Ghosh
,
D.
,
Subhash
,
G.
,
Sudarshan
,
T. S.
,
Radhakrishnan
,
R.
, and
Gao
,
X. L.
,
2007
, “
Dynamic Indentation Response of Fine-Grained Boron Carbide
,”
J. Am. Ceram. Soc.
,
90
(
6
), pp.
1850
1857
.
11.
Moriwaki
,
T.
,
Shamoto
,
E.
, and
Inoue
,
K.
,
1992
, “
Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration
,”
CIRP Ann.-Manuf. Technol.
,
41
(
1
), pp.
141
144
.
12.
Shamoto
,
E.
, and
Moriwaki
,
T.
,
1999
, “
Ultaprecision Diamond Cutting of Hardened Steel by Applying Elliptical Vibration Cutting
,”
CIRP Ann.-Manuf. Technol.
,
48
(
1
), pp.
441
444
.
13.
Suzuki
,
N.
,
Yokoi
,
H.
, and
Shamoto
,
E.
,
2011
, “
Micro/Nano Sculpturing of Hardened Steel by Controlling Vibration Amplitude in Elliptical Vibration Cutting
,”
Precis. Eng.
,
35
(
1
), pp.
44
50
.
14.
Axinte
,
D.
,
Butler-Smith
,
P.
,
Akgun
,
C.
, and
Kolluru
,
K.
,
2013
, “
On the Influence of Single Grit Micro-Geometry on Grinding Behavior of Ductile and Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
12
18
.
15.
Fang
,
F. Z.
,
Wu
,
H.
, and
Liu
,
Y. C.
,
2005
, “
Modelling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1681
1686
.
16.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
327
330
.
17.
Venkatachalam
,
S.
,
Li
,
X.
, and
Liang
,
S. Y.
,
2009
, “
Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3306
3319
.
18.
Liu
,
K.
,
Li
,
X. P.
, and
Liang
,
S. Y.
,
2007
, “
The Mechanism of Ductile Chip Formation in Cutting of Brittle Materials
,”
Int. J. Adv. Manuf. Technol.
,
33
(
9
), pp.
875
884
.
19.
Orowan
,
E.
,
1955
, “
Energy Criteria of Fracture
,”
Weld. J. Res. Suppl.
,
34
(
3
), pp.
157
160
.
20.
Irwin
,
G. R.
,
1957
, “
Analysis of Stress and Strain Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
, pp.
361
364
.
21.
Tanovic
,
L. J.
,
Bojanic
,
P.
,
Puzovic
,
R.
, and
Milutinovic
,
M.
,
2011
, “
Experimental Investigation of Microcutting Mechanisms in Granite Grinding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
024501
.
22.
Liu
,
K.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2003
, “
Characteristics of High Speed Micro-Cutting of Tungsten Carbide
,”
J. Mater. Process. Technol.
,
140
(
1
), pp.
352
357
.
23.
Subbiah
,
S.
, and
Melkote
,
S. N.
,
2007
, “
Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
321
331
.
You do not currently have access to this content.