Precracked 304 stainless steel (304SS) compact tension (CT) specimens repaired by laser with addition of different weight fractions of nano-tungsten carbide (nano-WC) were studied to investigate the effects of nano-WC on the fracture behavior and microstructure. Crack open displacements (CODs) measured by a digital image correlation (DIC) system were compared among specimens with different treatments. Microstructures were examined by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS). The results indicate an overall improvement of microstructure and fracture behavior. The specimen repaired by the addition of 5% nano-WC shows the most significant improvement from the current study. Both metallurgical bonding at the interface and fine equiaxial grains in the repaired layer are observed. The densification process of the repaired layer is also improved. In addition, an approximately 10–30% reduction of COD values was observed as the applied load varied from 1 to 20 kN. However, excessive addition of nano-WC led to the agglomeration and inhomogeneous distribution of WC nanoparticles in the repaired layers, resulting in the formation of microcracks. The fracture parameter COD shows a close relationship with the microstructure in laser repaired specimens with different powder ratio addition.

References

References
1.
Luo
,
K. Y.
,
Lu
,
J. Z.
,
Zhang
,
Y. K.
,
Zhou
,
J. Z.
,
Zhang
,
L. F.
,
Dai
,
F. Z.
,
Zhang
,
L.
,
Zhong
,
J. W.
, and
Cui
,
C. Y.
,
2011
, “
Effects of Laser Shock Processing on Mechanical Properties and Micro-Structure of ANSI 304 Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
,
528
(
13–14
), pp.
4783
4788
.
2.
Lu
,
J. Z.
,
Luo
,
K. Y.
,
Zhang
,
Y. K.
,
Sun
,
G. F.
,
Gu
,
Y. Y.
,
Zhou
,
J. Z.
,
Ren
,
X. D.
,
Zhang
,
X. C.
,
Zhang
,
L. F.
,
Chen
,
K. M.
,
Cui
,
C. Y.
,
Jiang
,
Y. F.
,
Feng
,
A. X.
, and
Zhang
,
L.
,
2010
, “
Grain Refinement Mechanism of Multiple Laser Shock Processing Impacts on ANSI 304 Stainless Steel
,”
Acta Mater.
,
58
(
16
), pp.
5354
5362
.
3.
Sun
,
S. D.
,
Reza
,
D. M.
,
Liu
,
Q. C.
,
Madabhushi
,
J.
,
Milan
,
B.
, and
Graham
,
C.
,
2011
, “
High Power Laser Powder Deposition Repair of AISI 4340 Steel in Aircraft Applications
,”
J. Iron Steel Res. Int.
,
18
, pp.
447
451
.
4.
Sexton
,
L.
,
Lavin
,
S.
,
Byrne
,
G.
, and
Kennedy
,
A.
,
2002
, “
Laser Cladding of Aerospace Materials
,”
J. Mater. Process. Technol.
,
122
(
1
), pp.
63
68
.
5.
Tobar
,
M. J.
,
Álvarez
,
C.
,
Amado
,
J. M.
,
Rodíguez
,
G.
, and
Yáñez
,
A.
,
2006
, “
Morphology and Characterization of Laser Clad Composite NiCrBSi–WC Coatings on Stainless Steel
,”
Surf. Coat. Technol.
,
200
(
22–23
), pp.
6313
6317
.
6.
Xu
,
P.
,
Lin
,
C. X.
,
Zhou
,
C. Y.
, and
Yi
,
X. P.
,
2014
, “
Wear and Corrosion Resistance of Laser Cladding AISI 304 Stainless Steel/Al2O3 Composite Coatings
,”
Surf. Coat. Technol.
,
238
, pp.
9
14
.
7.
Syed
,
R.
,
Jiang
,
W.
,
Wang
,
C. S.
, and
Sabir
,
M. I.
,
2015
, “
Fatigue Life of Stainless Steel 304 Enhancement by Addition of Multi-Walled Carbon Nanotubes (MWCNTs)
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
291
296
.
8.
Popoola
,
A. P. I.
,
2014
, “
Hardness, Microstructure and Corrosion Behaviour of WC-9Co-4Cr+TiC Reinforced Stainless Steel
,”
Int. J. Electrochem. Sci.
,
9
(
3
), pp.
1273
1285
.
9.
Pereira
,
J.
,
Zambrano
,
J.
,
Licausi
,
M.
,
Tobar
,
M.
, and
Amigo
,
V.
,
2015
, “
Tribology and High Temperature Friction Wear Behavior of MCrAlY Laser Cladding Coatings on Stainless Steel
,”
Wear
,
330–331
, pp.
280
287
.
10.
Singh
,
R.
,
Kumar
,
M.
,
Kumar
,
D.
, and
Mishra
,
S. K.
,
2012
, “
Erosion and Corrosion Behavior of Laser Cladded Stainless Steels With Tungsten Carbide
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2274
2282
.
11.
Hasçalik
,
A.
,
Ünal
,
E.
, and
Özdemir
,
N.
,
2006
, “
Fatigue Behaviour of AISI 304 Steel to AISI 4340 Steel Welded by Friction Welding
,”
J. Mater. Sci.
,
41
(
11
), pp.
3233
3239
.
12.
Abdollahi
,
A.
,
Alizadeh
,
A.
, and
Baharvandi
,
H. R.
,
2014
, “
Dry Sliding Tribological Behavior and Mechanical Properties of Al2024–5 wt.%B4C Nanocomposite Produced by Mechanical Milling and Hot Extrusion
,”
Mater. Des.
,
55
, pp.
471
481
.
13.
Akbari
,
M. K.
,
Baharvandi
,
H. R.
, and
Shirvanimoghaddam
,
K.
,
2015
, “
Tensile and Fracture Behavior of Nano/Micro TiB2 Particle Reinforced Casting A356 Aluminum Alloy Composites
,”
Mater. Des.
,
66
(Pt. A), pp.
150
161
.
14.
Anandan
,
S.
,
Pityana
,
S.
, and
Majumdar
,
J. D.
,
2012
, “
Structure–Property-Correlation in Laser Surface Alloyed AISI 304 Stainless Steel With WC + Ni + NiCr
,”
Mater. Sci. Eng., A
,
536
, pp.
159
169
.
15.
Wang
,
C. J.
, and
Lai
,
X. S.
,
2006
, “
Research and Analysis on Pulse Discharge Crack Arrest in Welding Junction
,”
Mech. Eng.
,
7
, pp.
73
74
.
16.
Abdollahi
,
A.
, and
Mashhadi
,
M.
,
2014
, “
Effect of B4C, MoSi2, Nano SiC and Micro-Sized SiC on Pressureless Sintering Behavior, Room-Temperature Mechanical Properties and Fracture Behavior of Zr(Hf)B2-Based Composites
,”
Ceram. Int.
,
40
(
7
), pp.
10767
10776
.
17.
Lee
,
W.-S.
, and
Su
,
T.-T.
,
1999
, “
Mechanical Properties and Microstructural Features of AISI 4340 High-Strength Alloy Steel Under Quenched and Tempered Conditions
,”
J. Mater. Process. Technol.
,
87
(
1–3
), pp.
198
206
.
18.
Bhattacharya
,
S.
,
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2011
, “
Microstructural Evolution of AISI 4340 Steel During Direct Metal Deposition Process
,”
Mater. Sci. Eng., A
,
528
(
6
), pp.
2309
2318
.
19.
Bhattacharya
,
S.
,
Dinda
,
G. P.
,
Dasgupta
,
A. K.
,
Natu
,
H.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2011
, “
Microstructural Evolution and Mechanical, and Corrosion Property Evaluation of Cu–30Ni Alloy Formed by Direct Metal Deposition Process
,”
J. Alloys Compd.
,
509
(
22
), pp.
6364
6373
.
20.
Sun
,
S. D.
,
Liu
,
Q.
,
Brandt
,
M.
,
Luzin
,
V.
,
Cottam
,
R.
,
Janardhana
,
M.
, and
Clark
,
G.
,
2014
, “
Effect of Laser Clad Repair on the Fatigue Behaviour of Ultra-High Strength AISI 4340 Steel
,”
Mater. Sci. Eng., A
,
606
, pp.
46
57
.
21.
Costa
,
L.
, and
Vilar
,
R.
,
2009
, “
Laser Powder Deposition
,”
Rapid Prototyping J.
,
15
(
4
), pp.
264
279
.
22.
Xu
,
J.-S.
,
Zhang
,
X.-C.
,
Xuan
,
F.-Z.
,
Tian
,
F.-Q.
,
Wang
,
Z.-D.
, and
Tu
,
S.-T.
,
2013
, “
Tensile Properties and Fracture Behavior of Laser Cladded WC/Ni Composite Coatings With Different Contents of WC Particle Studied by In-Situ Tensile Testing
,”
Mater. Sci. Eng., A
,
560
, pp.
744
751
.
23.
Nguyen
,
Q. B.
,
Chua
,
Y. H. D.
,
Tun
,
K. S.
,
Chan
,
J.
,
Kwok
,
R.
,
Wong
,
W. L. E.
, and
Gupta
,
M.
,
2013
, “
Effect of Addition of Nano-Al2O3 and Copper Particulates and Heat Treatment on the Tensile Response of AZ61 Magnesium Alloy
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p.
031004
.
24.
Lee
,
C.
,
Park
,
H.
,
Yoo
,
J.
,
Lee
,
C.
,
Woo
,
W.
, and
Park
,
S.
,
2015
, “
Residual Stress and Crack Initiation in Laser Clad Composite Layer With Co-Based Alloy and WC + NiCr
,”
Appl. Surf. Sci.
,
345
, pp.
286
294
.
You do not currently have access to this content.