High stress regions around corrosion pits can lead to crack nucleation and propagation. In fact, in many engineering applications, corrosion pits act as precursor to cracking, but prediction of structural damage has been hindered by lack of understanding of the process by which a crack develops from a pit and limitations in visualization and measurement techniques. An experimental approach able to accurately quantify the stress and strain field around corrosion pits is still lacking. In this regard, numerical modeling can be helpful. Several numerical models, usually based on finite element method (FEM), are available for predicting the evolution of long cracks. However, the methodology for dealing with the nucleation of damage is less well developed, and, often, numerical instabilities arise during the simulation of crack propagation. Moreover, the popular assumption that the crack has the same depth as the pit at the point of transition and by implication initiates at the pit base has no intrinsic foundation. A numerical approach is required to model nucleation and propagation of cracks without being affected by any numerical instability and without assuming crack initiation from the base of the pit. This is achieved in the present study, where peridynamics (PD) theory is used in order to overcome the major shortcomings of the currently available numerical approaches. Pit-to-crack transition phenomenon is modeled, and nonconventional and more effective numerical frameworks that can be helpful in failure analysis and in the design of new fracture-resistant and corrosion-resistant materials are presented.

References

References
1.
Pidaparti
,
R. M.
, and
Patel
,
R. R.
,
2011
, “
Modeling the Evolution of Stresses Induced by Corrosion Damage in Metals
,”
J. Mater. Eng. Perform.
,
20
(
7
), pp.
1114
1120
.
2.
Turnbull
,
A.
,
2014
, “
Corrosion Pitting and Environmentally Assisted Small Crack Growth
,”
Proc. R. Soc. A
,
470
(
2169
), p. 20140254.
3.
Pidaparti
,
R. M.
, and
Patel
,
R. K.
,
2010
, “
Investigation of a Single Pit/Defect Evolution During the Corrosion Process
,”
Corros. Sci.
,
52
(
9
), pp.
3150
3153
.
4.
Suter
,
T.
,
Webb
,
E. G.
,
Bohni
,
H.
, and
Alkire
,
R. C.
,
2001
, “
Pit Initiation on Stainless Steels in 1 M NaCl With and Without Mechanical Stress
,”
J. Electrochem. Soc.
,
148
(
5
), pp.
B174
B185
.
5.
Kondo
,
Y.
,
1989
, “
Prediction of Fatigue Crack Initiation Life Based on Pit Growth
,”
Corros. Sci.
,
45
(
1
), pp.
7
11
.
6.
Turnbull
,
A.
,
McCartney
,
L. N.
, and
Zhou
,
S.
,
2006
, “
A Model to Predict the Evolution of Pitting Corrosion and the Pit-to-Crack Transition Incorporating Statistically Distributed Input Parameters
,”
Corros. Sci.
,
48
(
8
), pp.
2084
2105
.
7.
Turnbull
,
A.
,
McCartney
,
L. N.
, and
Zhou
,
S.
,
2006
, “
Modelling of the Evolution of Stress Corrosion Cracks From Corrosion Pits
,”
Scr. Mater.
,
54
(
4
), pp.
575
578
.
8.
Turnbull
,
A.
,
Horner
,
D. A.
, and
Connolly
,
B. J.
,
2009
, “
Challenges in Modelling the Evolution of Stress Corrosion Cracks From Pits
,”
Eng. Fract. Mech.
,
76
(
5
), pp.
633
640
.
9.
Horner
,
D. A.
,
Connolly
,
B. J.
,
Zhou
,
S.
,
Crocker
,
L.
, and
Turnbull
,
A.
,
2011
, “
Novel Images of the Evolution of Stress Corrosion Cracks From Corrosion Pits
,”
Corros. Sci.
,
53
(
11
), pp.
3466
3485
.
10.
Ståhle
,
P.
,
Bjerkén
,
C.
, and
Jivkov
,
A. P.
,
2007
, “
On Dissolution Driven Crack Growth
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1880
1890
.
11.
Pidaparti
,
R. M.
, and
Rao
,
A. S.
,
2008
, “
Analysis of Pits Induced Stresses Due to Metal Corrosion
,”
Corros. Sci.
,
50
(
7
), pp.
1932
1938
.
12.
Pidaparti
,
R. M.
, and
Patel
,
R. R.
,
2008
, “
Correlation Between Corrosion Pits and Stresses in Al Alloys
,”
Mater. Lett.
,
62
(
30
), pp.
4497
4499
.
13.
Turnbull
,
A.
,
Wright
,
L.
, and
Crocker
,
L.
,
2010
, “
New Insight Into the Pit-to-Crack Transition From Finite Element Analysis of the Stress and Strain Distribution Around a Corrosion Pit
,”
Corros. Sci.
,
52
(
4
), pp.
1492
1498
.
14.
Rajabipour
,
A.
, and
Melchers
,
R. E.
,
2013
, “
A Numerical Study of Damage Caused by Combined Pitting Corrosion and Axial Stress in Steel Pipes
,”
Corros. Sci.
,
76
, pp.
292
301
.
15.
Zhu
,
L. K.
,
Yan
,
Y.
,
Qiao
,
L. J.
, and
Volinsky
,
A. A.
,
2013
, “
Stainless Steel Pitting and Early-Stage Stress Corrosion Cracking Under Ultra-Low Elastic Load
,”
Corros. Sci.
,
77
, pp.
360
368
.
16.
Popov
,
B. N.
,
2015
, “
Pitting and Crevice and Corrosion
,”
Corrosion Engineering Principles and Solved Problems
,
Elsevier
, Amsterdam, The Netherlands, pp.
289
325
.
17.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
18.
Bobaru
,
F.
, and
Hu
,
W.
,
2012
, “
The Meaning, Selection, and Use of the Peridynamic Horizon and Its Relation to Crack Branching in Brittle Materials
,”
Int. J. Fract.
,
176
(
2
), pp.
215
222
.
19.
De Meo
,
D.
,
Zhu
,
N.
, and
Oterkus
,
E.
,
2016
, “
Peridynamic Modeling of Granular Fracture in Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
,
138
(
4
), p.
041008
.
20.
Madenci
,
E.
, and
Oterkus
,
E.
,
2014
,
Peridynamic Theory and Its Applications
,
Springer
, New York.
21.
Chen
,
Z.
, and
Bobaru
,
F.
,
2015
, “
Peridynamic Modeling of Pitting Corrosion Damage
,”
J. Mech. Phys. Solids
,
78
, pp.
352
381
.
22.
Gavrilov
,
S.
,
Vankeerberghen
,
M.
,
Nelissen
,
G.
, and
Deconinck
,
J.
,
2007
, “
Finite Element Calculation of Crack Propagation in Type 304 Stainless Steel in Diluted Sulphuric Acid Solutions
,”
Corros. Sci.
,
49
(
3
), pp.
980
999
.
23.
Oterkus
,
S.
,
Madenci
,
E.
, and
Agwai
,
A.
,
2014
, “
Peridynamic Thermal Diffusion
,”
J. Comput. Phys.
,
265
, pp.
71
96
.
24.
Oterkus
,
S.
,
Madenci
,
E.
, and
Agwai
,
A.
,
2014
, “
Fully Coupled Peridynamic Thermomechanics
,”
J. Mech. Phys. Solids
,
64
, pp.
1
23
.
25.
Oterkus
,
S.
,
Madenci
,
E.
,
Oterkus
,
E.
,
Hwang
,
Y.
,
Bae
,
J.
, and
Han
,
S.
,
2014
, “
Hygro-Thermo-Mechanical Analysis and Failure Prediction in Electronic Packages by Using Peridynamics
,”
IEEE 64th Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 27–30, pp.
973
982
.
You do not currently have access to this content.