Displacement and stress fields in a functionally graded (FG) fiber-reinforced rotating disk of nonuniform thickness subjected to angular deceleration are obtained. The disk has a central hole, which is assumed to be mounted on a rotating shaft. Unidirectional fibers are considered to be circumferentially distributed within the disk with a variable volume fraction along the radius. The governing equations for displacement and stress fields are derived and solved using finite difference method. The results show that for disks with fiber rich at the outer radius, the displacement field is lower in radial direction but higher in circumferential direction compared to the disk with the fiber rich at the inner radius. The circumferential stress value at the outer radius is substantially higher for disk with fiber rich at the outer radius compared to the disk with the fiber rich at the inner radius. It is also observed a considerable amount of compressive stress developed in the radial direction in a region close to the outer radius. These compressive stresses may prevent any crack growth in the circumferential direction of such disks. For disks with fiber rich at the inner radius, the presence of fibers results in minimal changes in the displacement and stress fields when compared to a homogenous disk made from the matrix material. In addition, we concluded that disk deceleration has no effect on the radial and hoop stresses. However, deceleration will affect the shear stress. Tsai–Wu failure criterion is evaluated for decelerating disks. For disks with fiber rich at the inner radius, the failure is initiated between inner and outer radii. However, for disks with fiber rich at the outer radius, the failure location depends on the fiber distribution.

References

References
1.
Suresh
,
S.
, and
Mortensen
,
A.
,
1998
,
Fundamentals of Functionally Graded Materials
(Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites),
IOM Communications Ltd.
,
London
.
2.
Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A. and Ford, R. G.,
1999
,
Functionally Graded Materials: Design, Processing and Applications
,
Springer
,
New York
.
3.
Mousanezhad, D., Ghosh, R., Ajdari, A., Hamouda, A. M. S., Nayeb-Hashemi, H. and Vaziri, A.,
2014
, “
Impact Resistance and Energy Absorption of Regular and Functionally Graded Hexagonal Honeycombs With Cell Wall Material Strain Hardening
,”
Int. J. Mech. Sci.
,
89
, pp.
413
422
.
4.
Ajdari
,
A.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2011
, “
Dynamic Crushing and Energy Absorption of Regular, Irregular and Functionally Graded Cellular Structures
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
506
516
.
5.
Durodola
,
J. F.
, and
Adlington
,
J. E.
,
1997
, “
Functionally Graded Material Properties for Disks and Rotors
,”
Key Eng. Mater.
,
127–131
, pp.
1199
1206
.
6.
Çallioğlu
,
H.
,
Bektaş
,
N. B.
, and
Sayer
,
M.
,
2011
, “
Stress Analysis of Functionally Graded Rotating Discs: Analytical and Numerical Solutions
,”
Acta Mech. Sin.
,
27
(
6
), pp.
950
955
.
7.
Dai
,
T.
, and
Dai
,
H.-L.
,
2015
, “
Investigation of Mechanical Behavior for a Rotating FGM Circular Disk With a Variable Angular Speed
,”
J. Mech. Sci. Technol.
,
29
(
9
), pp.
3779
3787
.
8.
Bayat, M., Saleem, M., Sahari, B. B., Hamouda, A. M. S. and Mahdi, E.,
2008
, “
Analysis of Functionally Graded Rotating Disks With Variable Thickness
,”
Mech. Res. Commun.
,
35
(
5
), pp.
283
309
.
9.
Bayat, M., Sahari, B. B., Saleem, M., Ali, A. and Wong, S. V.,
2009
, “
Thermoelastic Solution of a Functionally Graded Variable Thickness Rotating Disk With Bending Based on the First-Order Shear Deformation Theory
,”
Thin-Walled Struct.
,
47
(
5
), pp.
568
582
.
10.
Damircheli
,
M.
, and
Azadi
,
M.
,
2011
, “
Temperature and Thickness Effects on Thermal and Mechanical Stresses of Rotating FG-Disks
,”
J. Mech. Sci. Technol.
,
25
(
3
), pp.
827
836
.
11.
Hassani, A., Hojjati, M. H., Mahdavi, E., Alashti, R. A. and Farrahi, G.,
2012
, “
Thermo-Mechanical Analysis of Rotating Disks With Non-Uniform Thickness and Material Properties
,”
Int. J. Pressure Vessels Piping
,
98
, pp.
95
101
.
12.
Afsar
,
A. M.
, and
Go
,
J.
,
2010
, “
Finite Element Analysis of Thermoelastic Field in a Rotating FGM Circular Disk
,”
Appl. Math. Modell.
,
34
(
11
), pp.
3309
3320
.
13.
Go
,
J.
,
Afsar
,
A. M.
, and
Song
,
J. I.
,
2010
, “
Analysis of Thermoelastic Characteristics of a Rotating FGM Circular Disk by Finite Element Method
,”
Adv. Compos. Mater.
,
19
(
2
), pp.
197
213
.
14.
Bahaloo, H., Papadopolus, J., Ghosh, R., Mahdi, E., Vaziri, A. and Nayeb-Hashemi, H.,
2016
, “
Transverse Vibration and Stability of a Functionally Graded Rotating Annular Disk With a Circumferential Crack
,”
Int. J. Mech. Sci.
,
113
, pp.
26
35
.
15.
Pelech
,
I.
, and
Shapiro
,
A. H.
,
1964
, “
Flexible Disk Rotating on a Gas Film Next to a Wall
,”
ASME J. Appl. Mech.
,
31
(
4
), pp.
577
584
.
16.
Advani
,
S. H.
,
1967
, “
Stationary Waves in Thin Spinning Disks
,”
Int. J. Mech. Sci.
,
9
(
5
), pp.
307
313
.
17.
Khorasany
,
R. M. H.
, and
Hutton
,
S. G.
,
2010
, “
An Analytical Study on the Effect of Rigid Body Translational Degree of Freedom on the Vibration Characteristics of Elastically Constrained Rotating Disks
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1186
1192
.
18.
Adams
,
G. G.
,
1987
, “
Critical Speeds for a Flexible Spinning Disk
,”
Int. J. Mech. Sci.
,
29
(
8
), pp.
525
531
.
19.
Horgan
,
C. O.
, and
Chan
,
A. M.
,
1999
, “
The Stress Response of Functionally Graded Isotropic Linearly Elastic Rotating Disks
,”
J. Elasticity
,
55
(
3
), pp.
219
230
.
20.
Asghari
,
M.
, and
Ghafoori
,
E.
,
2010
, “
A Three-Dimensional Elasticity Solution for Functionally Graded Rotating Disks
,”
Compos. Struct.
,
92
(
5
), pp.
1092
1099
.
21.
Kadkhodayan
,
M.
, and
Golmakani
,
M. E.
,
2014
, “
Non-Linear Bending Analysis of Shear Deformable Functionally Graded Rotating Disk
,”
Int. J. Non-Linear Mech.
,
58
, pp.
41
56
.
22.
Tang
,
S.
,
1969
, “
Elastic Stresses in Rotating Anisotropic Disks
,”
Int. J. Mech. Sci.
,
11
(
6
), pp.
509
517
.
23.
Peng
,
X. L.
, and
Li
,
X. F.
,
2012
, “
Elastic Analysis of Rotating Functionally Graded Polar Orthotropic Disks
,”
Int. J. Mech. Sci.
,
60
(
1
), pp.
84
91
.
24.
Murthy
,
D. N. S.
, and
Sherbourne
,
A. N.
,
1970
, “
Elastic Stresses in Anisotropic Disks of Variable Thickness
,”
Int. J. Mech. Sci.
,
12
(
7
), pp.
627
640
.
25.
Reddy
,
T. Y.
, and
Srinath
,
H.
,
1974
, “
Elastic Stresses in a Rotating Anisotropic Annular Disk of Variable Thickness and Variable Density
,”
Int. J. Mech. Sci.
,
16
(
2
), pp.
85
89
.
26.
Tahani
,
M.
,
Nosier
,
A.
, and
Zebarjad
,
S. M.
,
2005
, “
Deformation and Stress Analysis of Circumferentially Fiber-Reinforced Composite Disks
,”
Int. J. Solids Struct.
,
42
(
9–10
), pp.
2741
2754
.
27.
Alexandrova
,
N.
, and
Vila Real
,
P. M. M.
,
2008
, “
Deformation and Stress Analysis of an Anisotropic Rotating Annular Disk
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
(
1
), pp.
43
50
.
28.
Sayer, M., Topcu, M., Bektaş, N. B. and Tarakcilar, A. R.,
2005
, “
Thermo-Elastic Stress Analysis in a Thermoplastic Composite Disc
,”
Sci. Eng. Compos. Mater.
,
12
(
4
), pp.
251
260
.
29.
Zheng
,
Y.
,
2016
, “
Displacement and Stress Fields in Functionally Graded Rotating Composite Disk Under Deceleration With Variable Thickness
,” Master thesis, Northeastern University, Boston, MA.
30.
Sudheer
,
M.
,
Pradyoth
,
K. R.
, and
Somayaji
,
S.
,
2015
, “
Analytical and Numerical Validation of Epoxy/Glass Structural Composites for Elastic Models
,”
Am. J. Mater. Sci.
,
5
(
3C
), pp.
162
168
.
31.
Hosford
,
W. F.
,
2013
,
Elementary Materials Science
,
ASM International, Materials Park
,
OH
.
32.
Hahn
,
H. T.
, and
Tsai
,
S. W.
,
1980
,
Introduction to Composite Materials
,
Technomic Publishing Co., Inc.
, Lancaster, PA.
33.
Jones
,
R. M.
,
1999
,
Mechanics of Composite Materials
,
2nd ed.
,
Taylor & Francis
,
New York
.
34.
Liu, G., Nayeb-Hashemi, H., Vaziri, A., Olia, M., and Ghosh, R., 2016, “
Mechanical Properties of Biomimetic Leaf Composite
,”
ASME
Paper No. IMECE2016-65503.
35.
Wallenberger, F. T., and Bingham, P. A., eds.,,
2010
,
Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications
, 1st ed.,
Springer
,
New York
.
36.
Simmons (Mouldings) Ltd., 2009, “
Simmons: Excellence in Epoxy Resin Worksurfaces
,” Simmons (Mouldings) Ltd., Coventry, UK, accessed Aug. 30, 2016, http://www.epoxyworktops.com/epoxy-resin/mech-properties.html
You do not currently have access to this content.