This paper presents to verify the energy harvesting of a nonlinear piezoelectric multilayer beam under harmonic excitation. For getting the perfect performance in energy harvesting, the effect of the energy loss factor, resistive load, and excitation frequency are studied on the results of the power and voltage generated. In this paper, a numerical program is developed with matlab software. Numerical approximation of the nonlinear equations uses a mixed finite element formulation in terms of displacement and potential electrical variables. To verify the numerical results, the experimental results for the energy harvesting of a piezoelectric multilayer beam with harmonic base excitation are used. The multilayer piezoelectric beam (MPB) used consists of two bimorphs in the case of a series connection and a substructure layer of aluminum. For the considered electrical circuit, the piezoelectric energy harvesting model is connected to the resistive load and the generated power in MPB is sent to load resistance. The influence of the type of layer connection on the output voltage value is investigated. The generated voltage and electrical power of the resistive load are verified using the piezoelectric multilayer beam in both resonance and off-resonance cases. According to the results, the maximum value of electric power occurs at the optimum resistive load for the selected frequency value and the behavior of energy harvesting depends greatly on the excitation frequency. Also, the value of the capacitance and resistive load affects the voltage and power generated, and optimum resistance is vital for producing maximum power.

References

References
1.
Roundy
,
S. J.
,
2003
, “
Energy Scavenging for Wireless Sensor Nodes With a Focus on Vibration to Electricity Conversion
,”
Ph.D. thesis
, The University of California, Berkeley, CA.
2.
Roundy
,
S.
,
2005
, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
809
823
.
3.
Hausler
,
E.
,
Stein
,
L.
, and
Harbauer
,
G.
,
1984
, “
Implantable Physiological Power Supply With PVDF Film
,”
Ferroelectrics
,
60
(
1
), pp.
277
282
.
4.
Erturk
,
A.
,
2009
, “
Electromechanical Modeling of Piezoelectric Energy Harvesters
,”
Ph.D. dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.
5.
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
Assumed-Modes Formulation of Piezoelectric Energy Harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko Models With Axial Deformations
,”
ASME
Paper No. ESDA2010-25200.
6.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
, Hoboken, NJ.
7.
Ng
,
T. H.
, and
Liao
,
W. H.
,
2005
, “
Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
785
797
.
8.
Lallart
,
M.
,
Anton
,
S. R.
, and
Inman
,
D. J.
,
2010
, “
Frequency Self-Tuning Scheme for Broadband Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
9
), pp.
897
906
.
9.
Lazarus
,
A.
,
Thomas
,
O.
, and
Deu
,
J. F.
,
2012
, “
Finite Element Reduced Order Models for Nonlinear Vibrations of Piezoelectric Layered Beams With Applications to NEMS
,”
Finite Elem. Anal. Des.
,
49
(
1
), pp.
35
51
.
10.
Ghayour
,
M.
, and
Jabbari
,
M.
,
2013
, “
The Effect of Support and Concentrated Mass on the Performance of Piezoelectric Multilayer Beam Actuator and Frequencies
,”
The 3rd International Conference on Acoustics and Vibration (ISAV2013)
, Tehran, Iran, Dec. 25–26, Paper No. 3052.
11.
Kogl
,
M.
, and
Bucalem
,
M. L.
,
2005
, “
Analysis of Smart Laminates Using Piezoelectric MITC Plate and Shell Elements
,”
Comput. Struct.
,
83
(15–16), pp.
1153
1163
.
12.
Bendigeri
,
C.
,
Tomar
,
R.
,
Basavaraju
,
S.
, and
Arasukumar
,
K.
,
2011
, “
Detailed Formulation and Programming Method for Piezoelectric Finite Element
,”
Int. J. Pure Appl. Sci. Technol.
,
7
(
1
), pp.
1
21
.
13.
Sebald
,
G.
,
Kuwano
,
H.
, and
Guyomar
,
D.
,
2011
, “
Experimental Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
10
), p.
102001
.
14.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.
15.
Friswell
,
M. I.
,
Faruque
,
S. A.
,
Bilgen
,
O.
,
Adhikari
,
S.
,
Lees
,
A. W.
, and
Litak
,
G.
,
2012
, “
Non-Linear Piezoelectric Vibration Energy Harvesting From a Vertical Cantilever Beam With Tip Mass
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1505
1521
.
16.
Kaltenbacher
,
M.
,
2010
, “
Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
21
(
5
), pp.
773
785
.
17.
Van de Ende
,
D. A.
,
de Almeida
,
P.
, and
van der Zwaag
,
S.
,
2007
, “
Piezoelectric and Mechanical Properties of Novel Composites of PZT and a Liquid Crystalline Thermosetting Resin
,”
J. Mater. Sci.
,
42
(
15
), pp.
6417
6425
.
18.
Brian
,
P. B.
, and
Senthil
,
S. V.
,
2005
, “
Active Vibration Suppression of Sandwich Beams Using Piezoelectric Shear Actuators: Experiments and Numerical Simulations
,”
J. Intell. Mater. Syst. Struct.
,
16
(6), pp.
517
530
.
19.
Xu
,
T. B.
,
Jiang
,
X.
, and
Su
,
J.
,
2011
, “
A Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System
,”
Appl. Phys. Lett.
,
98
(
24
), p.
243503
.
20.
Xu
,
T. B.
,
Siochi
,
E. J.
,
Zuo
,
L.
,
Jiang
,
X.
, and
Kang
,
J. H.
,
2012
, “
Multistage Force Amplification of Piezoelectric Stacks
,” U.S. Patent No.
0,119,620
.
21.
Xu
,
T. B.
,
Emilie
,
J. S.
,
Kang
,
J. H.
,
Zuo
,
L.
,
Zhou
,
W.
,
Tang
,
X.
, and
Jiang
,
X.
,
2013
, “
Energy Harvesting Using a PZT Ceramic Multilayer Stack
,”
Smart Mater. Struct.
22
(
6
), p.
065015
.
22.
Yudong
,
C.
, and
Bintang
,
Y.
,
2012
, “
Non-Linear Modeling of Multilayer Piezoelectric Actuators in Non-Trivial Configurations Based on Actuator Design Parameters and Piezoelectric Material Properties
,”
J. Intell. Mater. Syst. Struct.
,
23
(
8
), pp.
875
884
.
23.
Kong
,
N.
,
Ha
,
D. S.
,
Erturk
,
A.
, and
Inman
,
D.
,
2010
, “
Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
13
), pp.
1293
1302
.
24.
Reddy
,
J. N.
,
2007
,
Nonlinear Finite Element Analysis
,
Oxford University Press
, Oxford, UK.
25.
Jabbari
,
M.
,
Ghayour
,
M.
, and
Mirdamadi
,
H. R.
,
2016
, “
Experimental and Numerical Results of Dynamics Behavior of a Nonlinear Piezoelectric Beam
,”
Mech. Adv. Mater. Struct.
,
23
(
8
), pp.
853
864
.
26.
Xu
,
T. B.
,
Tolliver
,
L.
,
Jiang
,
X.
, and
Su
,
J.
,
2013
, “
A Single Crystal Lead Magnesium Niobate-Lead Titanate Multilayer-Stacked Cryogenic Flextensional Actuator
,”
Appl. Phys. Lett.
,
102
(
4
), p.
042906
.
27.
Cook
,
R. D.
,
1995
,
Finite Element Analysis for Stress Analysis
,
Wiley
,
New York
.
28.
Clough
,
R. W.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
Wiley
,
New York
.
29.
Cho
,
Y.
, and
Mandai
,
Y.
,
1995
, “
Dynamic Measurement of Capacitance Variation of Piezoelectric Ceramic With Stress
,”
Jpn. J. Appl. Phys. I
,
34
(3), pp.
1591
1594
.
30.
Schmid
,
M.
,
Benes
,
E.
,
Burger
,
W.
, and
Kravchenko
,
V.
,
1991
, “
Motional Capacitance of Layered Piezoelectric Thickness-Mode Resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
3
), pp.
199
206
.
31.
Xu
,
T. B.
,
Siochi
,
E. J.
,
Kang
,
J. H.
,
Zuo
,
L.
,
Zhou
,
W.
,
Tang
,
X.
, and
Jiang
,
X.
,
2011
, “
A Piezoelectric PZT Ceramic Multilayer Stack for Energy Harvesting Under Dynamic Forces
,”
ASME
Paper No. DETC 2011-47720.
32.
Fogiel
,
M.
,
1996
,
The Handbook of Electrical Engineering
,
Research & Education Association
,
Piscataway, NJ
.
You do not currently have access to this content.