This study concerns the development of peridynamic (PD) strain energy density functions for a Neo-Hookean type membrane under equibiaxial, planar, and uniaxial loading conditions. The material parameters for each loading case are determined by equating the PD strain energy density to that of the classical continuum mechanics. The PD equations of motion are derived based on the Neo-Hookean model under the assumption of incompressibility. Numerical results concern the deformation of a membrane with a defect in the form of a hole, a crack, and a rigid inclusion under equibiaxial, planar, and uniaxial loading conditions. The PD predictions are verified by comparison with those of finite element analysis.

References

References
1.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
2.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials—I: Fundamental Concepts. II: Some Uniqueness Theorem for Pure Homogeneous Deformation
,”
Philos. Trans. R. Soc., A
,
240
(
822
), pp.
459
508
.
3.
Treloar
,
L. R. G.
,
1943
, “The Elasticity of a Network of Long-Chain Molecules—II,”
Trans. Faraday Soc.
,
39
, pp.
241
246
.
4.
Melenk
,
J. M.
, and
Babuska
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(1–4), pp.
289
314
.
5.
Liu
,
W. K.
,
Chang
,
H.
,
Chen
,
J. S.
,
Belytschko
,
T.
, and
Zhang
,
Y. F.
,
1988
, “
Arbitrary Lagrangian–Eulerian Petrov–Galerkin Finite Elements for Nonlinear Continua
,”
Comput. Methods Appl. Mech. Eng.
,
68
(
3
), pp.
259
310
.
6.
Khoei
,
A. R.
,
Azami
,
A. R.
,
Anahid
,
M.
, and
Lewis
,
R. W.
,
2006
, “
A Three-Invariant Hardening Plasticity for Numerical Simulation of Powder Forming Processes Via the Arbitrary Lagrangian–Eulerian FE Model
,”
Int. J. Numer. Methods Eng.
,
66
(
5
), pp.
843
877
.
7.
Rodriguez-Ferran
,
A.
,
Casadei
,
F.
, and
Huerta
,
A.
,
1998
, “
ALE Stress Update for Transient and Quasistatic Processes
,”
Int. J. Numer. Methods Eng.
,
43
(
2
), pp.
241
262
.
8.
Yamada
,
T.
, and
Kikuchi
,
F.
,
1993
, “
An Arbitrary Lagrangian–Eulerian Finite Element Method for Incompressible Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
102
(
2
), pp.
149
177
.
9.
Bayoumi
,
H. N.
, and
Gadala
,
M. S.
,
2004
, “
A Complete Finite Element Treatment for the Fully Coupled Implicit ALE Formulation
,”
Comput. Mech.
,
33
(
6
), pp.
435
452
.
10.
Gu
,
Y. T.
,
Wang
,
Q. X.
, and
Lam
,
K. Y.
,
2007
, “
A Meshless Local Kriging Method for Large Deformation Analyses
,”
Comput. Methods Appl. Mech. Eng.
,
196
(9–12), pp.
1673
1684
.
11.
Hardee
,
E.
,
Chang
,
K. H.
,
Grindeanu
,
I.
,
Yoon
,
S.
,
Kaneko
,
M.
, and
Chen
,
J. S.
,
1999
, “
A Structural Nonlinear Analysis Workspace (SNAW) Based on Meshless Methods
,”
Adv. Eng. Software
,
30
(
3
), pp.
153
175
.
12.
Grindeanu
,
I.
,
Choi
,
K. K.
, and
Chen
,
J. S.
,
1999
, “
Shape Design Optimization of Hyperelastic Structures Using a Meshless Method
,”
Am. Inst. Aeronaut. Astronaut.
,
37
(
8
), pp.
990
997
.
13.
Choi
,
K. K.
, and
Santos
,
J. L. T.
,
1987
, “
Design Sensitivity Analysis of Nonlinear Structural Systems—Part I: Theory
,”
Int. J. Numer. Methods Eng.
,
24
(
11
), pp.
2039
2055
.
14.
Tanner
,
C.
,
Carter
,
T.
, and
Hawkes
,
D.
,
2006
, “
3D Rezoning for Finite Element Modelling of Large Breast Deformations
,”
European Modelling Symposium
, London, Sept. 11–12, pp.
51
53
.
15.
Watari
,
R.
,
Hashimoto
,
G.
, and
Okuda
,
H.
,
2013
, “
Mesh Coarsening Method Based on Multi-Point Constraints for Large Deformation Finite Element Analysis of Almost Incompressible Hyperelastic Material
,”
International Conference on Simulation Technology
(
JSST
), Tokyo, Sept. 11–13, Paper No. 20159.
16.
Trapper
,
P.
, and
Volokh
,
K. Y.
,
2008
, “
Cracks in Rubber
,”
Int. J. Solids Struct.
,
45
(
24
), pp.
6034
6044
.
17.
Mediavilla
,
J.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2006
, “
A Robust and Consistent Remeshing-Transfer Operator for Ductile Fracture Simulations
,”
Comput. Struct.
,
84
(8–9), pp.
604
623
.
18.
Bouchard
,
P. O.
,
Bay
,
F.
,
Chastel
,
Y.
, and
Tovena
,
I.
,
2000
, “
Crack Propagation Modelling Using an Advanced Remeshing Technique
,”
J. Appl. Mech. Eng.
,
189
(
3
), pp.
723
742
.
19.
Rashid
,
M.
,
1998
, “
The Arbitrary Local Mesh Replacement Method: An Alternative to Remeshing for Crack Propagation Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
154
(1–2), pp.
133
150
.
20.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
21.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elasticity
,
88
(
2
), pp.
151
184
.
22.
Oterkus
,
E.
, and
Madenci
,
E.
,
2014
,
Peridynamic Theory and Its Applications
,
Springer
,
New York
.
23.
Silling
,
S. A.
, and
Bobaru
,
F.
,
2005
, “
Peridynamic Modeling of Membranes and Fibers
,”
Int. J. Non-Linear Mech.
,
40
(2–3), pp.
395
409
.
24.
Bang
,
D. J.
,
2015
, “
Peridynamic Modeling of Hyperelastic Materials
,”
Ph.D. thesis
, University of Arizona, Tucson, AZ.
25.
Kilic
,
B.
, and
Madenci
,
E.
,
2010
, “
An Adaptive Dynamic Relaxation Method for Quasi-Static Simulations Using the Peridynamic Theory
,”
Theor. Appl. Fract. Mech.
,
53
(
3
), pp.
194
201
.
26.
Madenci
,
E.
, and
Oterkus
,
S.
,
2016
, “
Ordinary State-Based Peridynamics for Plastic Deformation According to von Mises Yield Criteria With Isotropic Hardening
,”
J. Mech. Phys. Solids
,
86
, pp.
192
219
.
27.
Bobaru
,
F.
,
Yang
,
M.
,
Alves
,
L. F.
,
Silling
,
S. A.
,
Askari
,
E.
, and
Xu
,
J.
,
2009
, “
Convergence, Adaptive Refinement, and Scaling in 1D Peridynamics
,”
Int. J. Numer. Methods Eng.
,
77
(
6
), pp.
852
877
.
You do not currently have access to this content.