The aim of this work is to design a lightweight, creep-resistant blade for an axial single-stage micro-gas turbine. The selected process was casting of an intermetallic titanium/aluminum alloy. All the project phases are described, from the preliminary thermodynamic and geometric stage design, to its three-dimensional (3D) modeling and the subsequent finite element method–computational fluid dynamics (FEM-CFD) analysis, to the manufacturing process of the single rotor blade. The blade making (height 7 cm and chord 5 cm, approximately) consisted in a prototyping phase in which a fully 3D version was realized by means of fused deposition modeling and then in the actual production of a full-scale set of blades by investment casting in an induction furnace. The produced items showed acceptable characteristics in terms of shape and soundness. Metallographic investigations and preliminary mechanical tests were performed on the blade specimens. The geometry was then refined by a CFD study, and a slightly modified shape was obtained whose final testing under operative conditions is though left for a later study. This paper describes the spec-to-final product procedure and discusses some critical aspects of this manufacturing process, such as the considerable reactivity between the molten metal and the mold material, the resistance of the ceramic shell to the molten metal impact at high temperatures, and the maximal acceptable mold porosity for the specified surface finish. The CFD results that led to the modification of the original commercial shape are also discussed, and a preliminary performance assessment of the turbine stage is presented and discussed.

References

References
1.
Clemens
,
H.
, and
Smarsly
,
W.
,
2011
, “
Light-Weight Intermetallic Titanium Aluminides—Status of Research and Development
,”
Adv. Mater. Res.
,
278
, pp.
551
556
.
2.
Thomas
,
M.
, and
Bacos
,
M.
,
2011
, “
Processing and Characterization of TiAl Based Alloys: Towards an Industrial Scale
,”
J. Aerosp. Lab
,
AL3-05
(
3
), pp.
1
11
.
3.
Sheng
,
W.
,
Li
,
D.
,
Yang
,
R.
,
Guo
,
J.
,
Liu
,
Y.
,
Su
,
Y.
, and
Jia
,
J.
,
2001
, “
Research on Ti-48%Al-2%Cr-2%Nb Automobile Exhaust Valve Cast by Centrifugal Casting Process in Permanent Mold
,”
Foundry
,
3
, pp.
129
133
.
4.
Kim
,
Y.-W.
,
Morris
,
D.
,
Yang
,
R.
, and
Leyens
,
C.
,
2008
,
Structural Aluminides for Elevated Temperature Applications
,
The Minerals, Metals and Materials Society
,
Warrendale, PA
.
5.
Lin
,
J. P.
,
Xu
,
X. J.
,
Wang
,
Y. L.
,
He
,
S. F.
,
Zhang
,
Y.
,
Song
,
X. P.
, and
Chen
,
G. L.
,
2007
, “
High Temperature Deformation Behaviors of a High Nb Containing TiAl Alloy
,”
Intermetallics
,
15
(
5–6
), pp.
668
674
.
6.
Peters
,
M.
, and
Leyens
,
C.
,
2003
,
Titanium and Titanium Alloys: Fundamentals and Application
,
Wiley-VCH
,
Weinheim, Germany
.
7.
Brotzu
,
A.
,
Felli
,
F.
, and
Pilone
,
D.
,
2012
, “
Fracture Toughness of TiAl-Cr-Nb-Mo Alloys Produced Via Centrifugal Casting
,”
Fratt. Integr. Strutturale
,
22
, pp.
20
25
.
8.
Abdallah
,
Z.
,
Whittaker
,
M. T.
, and
Bache
,
M. R.
,
2013
, “
High Temperature Creep Behaviour in the γ Titanium Aluminide Ti-45Al-2Mn-2Nb
,”
Intermetallics
,
38
, pp.
55
62
.
9.
Schwaighofer
,
E.
,
Clemens
,
H.
,
Mayer
,
S.
,
Lindemann
,
J.
,
Klose
,
J.
,
Smarsly
,
W.
, and
Güther
,
V.
,
2014
, “
Microstructural Design and Mechanical Properties of a Cast and Heat-Treated Intermetallic Multi-Phase γ-TiAl Based Alloy
,”
Intermetallics
,
44
, pp.
128
140
.
10.
Pilone
,
D.
,
Felli
,
F.
, and
Brotzu
,
A.
,
2013
, “
High Temperature Oxidation Behaviour of TiAl-Cr-Nb-Mo Alloys
,”
Intermetallics
,
43
, pp.
131
137
.
11.
Pilone
,
D.
, and
Felli
,
F.
,
2012
, “
Isothermal Oxidation Behaviour of TiAl-Cr-Nb-B Alloys Produced by Induction Melting
,”
Intermetallics
,
26
, pp.
36
39
.
12.
Brotzu
,
A.
,
Felli
,
F.
, and
Pilone
,
D.
,
2014
, “
Effect of Alloying Elements on the Behaviour of TiAl-Based Alloys
,”
Intermetallics
,
54
, pp.
176
180
.
13.
Perdrix
,
F.
,
Trichet
,
M. F.
,
Bonnentien
,
J. L.
,
Cornet
,
M.
, and
Bigot
,
J.
,
1999
, “
Influence of Cooling Rate on Microstructure and Mechanical Properties of a Ti-48Al Alloy
,”
Intermetallics
,
7
(
12
), pp.
1323
1328
.
14.
Cosentino
,
S.
,
Guelpa
,
E.
,
Melli
,
R.
,
Sciacovelli
,
A.
,
Sciubba
,
E.
,
Toro
,
C.
, and
Verda
,
V.
,
2014
, “
Optimal Operation and Sensitivity Analysis of a Large District Heating Network Through Pod Modeling
,”
ASME
Paper No. IMECE2014-39509.
15.
Capata
,
R.
,
Menna
,
L.
,
Sciubba
,
E.
,
Brotzu
,
A.
,
Felli
,
F.
, and
Pilone
,
D.
,
2015
, “
Design, Prototyping and Preliminary Testing of a Ti-Al Gas Turbine Blade
,”
ASME
Paper No. IMECE2015-5005.
16.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
17.
McQuilling
,
M. W.
,
2007
, “
Design and Validation of a High-Lift Low-Pressure Turbine Blade
,”
Ph.D. dissertation
, Wright State University, Dayton, OH.
18.
Natalini
,
G.
, and
Sciubba
,
E.
,
1999
, “
Minimisation of the Local Rates of Entropy Production in the Design of Air-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
466
475
.
19.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
,
1995
, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
115
125
.
20.
Trigg
,
M. A.
,
Tubby
,
G. R.
, and
Sheard
,
A. G.
,
1999
, “
Automatic Genetic Optimization Approach to Two-Dimensional Blade Profile Design for Steam Turbines
,”
ASME J. Turbomach.
,
121
(
1
), pp.
11
17
.
21.
Yamaguchi
,
M.
,
Inui
,
H.
, and
Ito
,
K.
,
2000
, “
High-Temperature Structural Intermetallics
,”
Acta Mater.
,
48
(
1
), pp.
307
322
.
22.
Ye
,
H. Q.
,
1999
, “
Recent Developments in Ti3Al and TiAl Intermetallics Research in China
,”
Mater. Sci. Eng. A
,
263
(
2
), pp.
289
295
.
23.
Guo
,
J.
,
Liu
,
G.
,
Su
,
Y.
,
Ding
,
H.
,
Jia
,
J.
, and
Fu
,
H.
,
2002
, “
The Critical Pressure and Impeding Pressure of Al Evaporation During Induction Skull Melting Processing of TiAl
,”
Metall. Mater. Trans. A
,
33
(
10
), pp.
3249
3253
.
You do not currently have access to this content.