In a “very high-temperature reactor” (VHTR), the Nb–V-modified 9Cr–1Mo creep strength enhance the ferritic (CSEF) steel which is the chosen material for fabrication of reactor pressure vessels and piping because of its excellent high temperature thermal and mechanical properties. In such CSEF steel weldments, the hydrogen-induced cracking (HIC) is a critical issue. In the present work, the different levels of hydrogen have been induced in P91 CSEF weld metal to study their effect on HIC. The HIC susceptibility of P91 steel welds has been studied by carrying out the tensile test and flexural test for the different level of diffusible hydrogen. The hydrogen levels in deposited metals have been measured by using the mercury method. The fracture tensile and flexural test samples have been characterized based on the field-emission scanning electron microscope (FE-SEM). It is concluded that higher the level of diffusible hydrogen in deposited metal, more is the susceptibility of P91 steel to HIC. The minimum flexural and tensile strength are 507.45 MPa and 282 MPa, respectively, for 12.54 ml volume of diffusible hydrogen in 100 g of deposited weld metal.

References

References
1.
Beér
,
J. M.
,
2007
, “
High Efficiency Electric Power Generation; The Environmental Role
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
107
134
.
2.
Hu
,
P.
,
Yan
,
W.
,
Sha
,
W.
,
Wang
,
W.
,
Shan
,
Y.
, and
Yang
,
K.
,
2011
, “
Microstructure Evolution of a 10Cr Heat-Resistant Steel During High Temperature Creep
,”
J. Mater. Sci. Technol.
,
27
(
4
), pp.
344
351
.
3.
Dutt
,
B. S.
,
Babu
,
M. N.
,
Shanthi
,
G.
,
Venugopal
,
S.
,
Sasikala
,
G.
, and
Bhaduri
,
A. K.
,
2012
, “
Influence of Microstructural in Homogeneities on the Fracture Toughness of Modified 9Cr–1Mo Steel at 298–823 K
,”
J. Nucl. Mater.
,
421
(
1–3
), pp.
15
21
.
4.
Pandey
,
C.
, and
Mahapatra
,
M. M.
,
2016
, “
Effect of Groove Design and Post Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld
,”
J. Mater. Eng. Perform.
,
25
(
7
), pp.
2761
2775
.
5.
Mannan
,
S. L.
,
Chetal
,
S. C.
,
Raj
,
B.
, and
Bhoje
,
S. B.
,
2003
, “
Selection of Materials for Prototype Fast Breeder Reactor
,”
Trans. Indian Inst. Met.
,
56
(
2
), pp.
155
178
.
6.
Choudhary
,
B. K.
, and
Isaac Samuel
,
E.
,
2011
, “
Creep Behaviour of Modified 9Cr–1Mo Ferritic Steel
,”
J. Nucl. Mater.
,
412
(
1
), pp.
82
89
.
7.
Angiolini
,
M. E.
,
Aiello
,
G.
,
Matheron
,
P.
,
Pilloni
,
L.
, and
Giannuzzi
,
G. M.
,
2016
, “
Thermal Ratcheting of a P91 Steel Cylinder Under an Axial Moving Temperature Distribution
,”
J. Nucl. Mater.
,
472
, pp.
215
226
.
8.
Thomas Paul
,
V.
,
Saroja
,
S.
, and
Vijayalakshmi
,
M.
,
2008
, “
Microstructural Stability of Modified 9Cr–1Mo Steel During Long Term Exposures at Elevated Temperatures
,”
J. Nucl. Mater.
,
378
(
3
), pp.
273
281
.
9.
Maruyama
,
K.
,
Sawada
,
K.
, and
Koike
,
J.
,
2001
, “
Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel
,”
ISIJ Int.
,
41
(
6
), pp.
641
653
.
10.
Pandey
,
C.
, and
Mahapatra
,
M. M.
,
2016
, “
Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes
,”
J. Mater. Eng. Perform.
,
25
(
6
), pp.
2195
2210
.
11.
Murty
,
K. L.
, and
Charit
,
I.
,
2008
, “
Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities
,”
J. Nucl. Mater.
,
383
(
1–3
), pp.
189
195
.
12.
Klueh
,
R. L.
,
2004
, “
Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors
,”
Technical Report No. ORNL/TM-2004/176
.
13.
Pandey
,
C.
,
Giri
,
A.
, and
Mahapatra
,
M. M.
,
2016
, “
Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties
,”
Mater. Sci. Eng. A
,
664
, pp.
58
74
.
14.
Hong
,
S. G.
,
Lee
,
W. B.
, and
Park
,
C. G.
,
2001
, “
The Effects of Tungsten Addition on the Microstructural Stability of 9Cr–Mo Steels
,”
J. Nucl. Mater.
,
288
(
2–3
), pp.
202
207
.
15.
Pandey
,
C.
, and
Mahapatra
,
M. M.
,
2016
, “
Effect of Long-Term Ageing on the Microstructure and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel
,”
Trans. Indian Inst. Met.
,
69
(
9
), pp.
1657
1673
.
16.
Alexander
,
D. J.
,
Maziasz
,
P. J.
, and
Brinkman
,
C. R.
,
1993
, “
Microstructures and Mechanical Properties of Aging Material
,” P. K. Liaw, R. Viswanathan, K/L. Murty, and D. Frear, eds.,
TMS
, Warrendale, PA, pp. 343–438.
17.
Pandey
,
C.
,
Giri
,
A.
, and
Mahapatra
,
M. M.
,
2016
, “
Effect of Normalizing Temperature on Microstructural Stability and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel
,”
Mater. Sci. Eng. A
,
657
, pp.
173
184
.
18.
Klueh
,
R. L.
, and
Nelson
,
A. T.
,
2007
, “
Ferritic/Martensitic Steels for Next-Generation Reactors
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
37
52
.
19.
Chuvas
,
T. C.
,
Garcia
,
P. S. P.
,
Pardal
,
J. M.
, and
Fonseca
M. da P. C.
,
2015
, “
Influence of Heat Treatment in Residual Stresses Generated in P91 Steel-Pipe Weld
,”
Mater. Res.
,
18
(
3
), pp.
614
621
.
20.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2011
, “
Finite Element Simulation of Welded P91 Steel Pipe Undergoing Post-Weld Heat Treatment
,”
Sci. Technol. Weld. Joints
,
16
(
3
), pp.
232
238
.
21.
Paddea
,
S.
,
Francis
,
J. A.
,
Paradowska
,
A. M.
,
Bouchard
,
P. J.
, and
Shibli
,
I. A.
,
2012
, “
Residual Stress Distributions in a P91 Steel-Pipe Girth Weld Before and After Post Weld Heat Treatment
,”
Mater. Sci. Eng. A
,
534
, pp.
663
672
.
22.
Shibli
,
I. A.
, and
Robertson
,
D. G.
,
2006
, “
9-12 Cr Martensitic Steel. In: Review of the Use of New High Strength Steels in Conventional and HRSG Boilers
,” R&D Plant Experience, ETD Report, European Technology Development, Surrey, UK, Report No. 1045-gsp-40.
23.
Kou
,
S.
,
2002
,
Welding Metallurgy
,
2nd ed.
,
Wiley
,
New York
, p.
411
.
24.
Pandey
,
C.
,
Saini
,
N.
,
Mahapatra
,
M. M.
, and
Kumar
,
P.
,
2016
, “
Hydrogen Induced Cold Cracking of Creep Resistant Ferritic P91 Steel for Different Diffusible Hydrogen Levels in Deposited Metal
,”
Int. J. Hydrogen Energy
,
41
(
39
), pp.
17695
17712
.
25.
Fydrych
,
D.
, and
Łabanowski
,
J.
,
2015
, “
An Experimental Study of High-Hydrogen Welding Processes
,”
Rev. Metal.
,
51
(
4
), pp.
1
7
.
26.
Fydrych
,
D.
,
Świerczyńska
,
A.
, and
Rogalski
,
G.
,
2015
, “
Effect of Underwater Wet Welding Conditions on the Diffusible Hydrogen Content in Deposited Metal
,”
Metall. Ital.
,
11/12
, pp.
47
52
.
27.
Magudeeswaran
,
G.
,
Balasubramanian
,
V.
, and
Madhusudhan
,
R. G.
,
2008
, “
Hydrogen Induced Cold Cracking Studies on Armour Grade High Strength, Quenched and Tempered Steel Weldments
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1897
1908
.
28.
Basu
,
B.
,
2007
, “
Special Consideration for Use of High Strength Steel Weldments
,”
A. K.
Shah
, ed.,
National Conference on “Welding—Productivity and Quality,”
Organized by Naval Materials Laboratory, Ambernath, Allied Publishers, Mumbai, India, pp.
73
78
.
29.
Padhy
,
G. K.
,
Ramasubbu
,
V.
, and
Albert
,
S. K.
,
2015
, “
Rapid Determination of Diffusible Hydrogen in Steel Welds Using a Modified Gas Chromatography Facility
,”
J. Test. Eval.
,
43
(
1
), pp.
69
79
.
30.
Padhy
,
G. K.
,
Ramasubbu
,
V.
,
Murugesan
,
N.
,
Ramesh
,
C.
,
Parvathavarthini
,
N.
, and
Albert
,
S. K.
,
2013
, “
Determination of Apparent Diffusivity of Hydrogen in 9Cr-1MoVNbN Steel Using Hot Extraction-PEMHS Technique
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
10683
10693
.
31.
Fydrych
,
D.
,
Łabanowski
,
J.
, and
Rogalski
,
G.
,
2013
, “
Weldability of High Strength Steels in Wet Welding Conditions
,”
Polish Marit. Res.
,
20
(
2
), pp.
67
73
.
32.
Granjon
,
H.
,
1969
, “
The Implants Method for Studying the Weldability of High Strength Steel
,”
Metal Constr. Brit Weld. J.
,
1
(
11
), pp.
509
515
.
33.
Manimozhi
,
S.
,
Suresh
,
S.
, and
Muthupandi
,
V.
,
2010
, “
HAZ Hydrogen Cracking of 9Cr-0.5Mo-1.7W Steels
,”
Int. J. Adv. Manuf. Technol.
,
51
(
1
), pp.
217
223
.
34.
Albert
,
S. K.
,
Ramasubbu
,
V.
,
Sundar Raj
,
S. I.
, and
Bhaduri
,
A. K.
,
2011
, “
Hydrogen-Assisted Cracking Susceptibility of Modified 9Cr-1Mo Steel and Its Weld Metal
,”
Weld. World
,
55
(
7
), pp.
66
74
.
35.
Yue
,
X.
,
2015
, “
Investigation on Heat-Affected Zone Hydrogen-Induced Cracking of High Strength Naval Steels Using the Granjon Implant Test
,”
Weld. J.
,
59
(
1
), pp.
77
89
.
36.
Yue
,
X.
,
Feng
,
X. L.
, and
Lippord
,
J. C.
,
2013
, “
Quantifying Heat Affected Zone Hydrogen Induced Cracking in High Strength Naval Steels
,”
Weld. J.
,
92
(
9
), pp.
265
273
.
37.
IS
,
1986
, “
Methods for Determination of Diffusible Hydrogen Content of Deposited Weld Metal From Covered Electrodes in Welding Mild and Low Alloy Steels
,” Bureau of Indian Standards, Chennai, Tamil Nadu, India,
Standard No. IS: 11802-1986
.
38.
Pandey
,
C.
,
Giri
,
A.
, and
Mahapatra
M. M.
,
2016
, “
On the Prediction of Effect of Direction of Welding on Bead Geometry and Residual Deformation of Double Sided Fillet Weld
,”
Int. J. Steels Struct.
,
16
(
2
), pp.
333
345
.
39.
Handstock
,
R.
,
2009
, “
Including Hydrogen Assisted Cold Cracking in High Strength Steel Weld Metal
,”
Ph.D. thesis
, University of Wollongong, Wollongong, Australia.
40.
Law
,
M.
,
Nolan
,
D.
, and
Handstock
,
R.
,
2008
, “
Method for the Quantitative Assessment of Transverse Weld Metal Hydrogen Cracking
,”
Mater. Charact.
,
59
(
8
), pp.
991
999
.
41.
Shrestha
,
T.
,
Basirat
,
M.
,
Charit
,
I.
,
Potirniche
,
G. P.
,
Rink
,
K. K.
, and
Sahaym
,
U.
,
2012
, “
Creep Deformation Mechanisms in Modified 9Cr–1Mo Steel
,”
J. Nucl. Mater.
,
423
(
1–3
), pp.
110
119
.
42.
Hann
,
B.
, and
Bendick
,
W.
,
2008
, “
Part 1: Metallurgical principles-Long-term properties-Recommendations for use
,”
Vallourec
,
47
, pp. 3–12.
43.
Hart
,
P. H. M.
, and
Watkinson
,
E.
,
1975
, “
Weld Metal Implant Test Ranks Cr-Mo Steels Hydrogen Cracking Resistance
,”
Weld. J.
,
54
(
9
), pp.
288
295
.
You do not currently have access to this content.