Automotive manufacturers always seek high strength and high formability materials for automotive bodies. Advanced high strength steels (AHSS) are excellent candidates for this purpose. These steels generally show a reasonable degree of formability, in addition to their high strength. One particular type is the twinning-induced plasticity (TWIP) steel, which is a high manganese austenite steel, and represents a second generation in AHSS. In this study, comprehensive deformation analysis of TWIP900CR steel including tensile, bending, Erichsen, and deep drawing of cylindrical cups tests is made. Finite element simulation of U and V shaped bending processes is also performed. Results indicate that the TWIP steel has good mechanical properties and high formability. However, springback is quite significant. The coining force should be considered in order to reduce the amount of springback. For springback prediction, it is found that the Yld2000-2d material model has better prediction capability than the Hill48 model.

References

References
1.
Schumann
,
V. H.
,
1972
, “
Martensitische Umwandlung in Austenitischen Mangan-Kohlenstoff-Stählen
,”
Neue Hütte
,
17
(
10
), pp.
605
609
.
2.
Chung
,
K.
,
Ahn
,
K.
,
Yoo
,
D. H.
,
Chung
,
K. H.
,
Seo
,
M. H.
, and
Park
,
S. H.
,
2011
, “
Formability of TWIP (Twinning Induced Plasticity) Automotive Sheets
,”
Int. J. Plast.
,
27
(
1
), pp.
52
81
.
3.
Dai
,
Y. J.
,
Tang
,
D.
,
Mi
,
Z. L.
, and
,
J. C.
,
2010
, “
Microstructure Characteristics of an Fe-Mn-C TWIP Steel After Deformation
,”
J. Iron Steel Res. Int.
,
17
(
9
), pp.
53
59
.
4.
Renard
,
K.
, and
Jacques
,
P. J.
,
2012
, “
On the Relationship Between Work Hardening and Twinning Rate in TWIP Steels
,”
Mater. Sci. Eng. A
,
542
(
12
), pp.
8
14
.
5.
Soulami
,
A.
,
Choi
,
K. S.
,
Shen
,
Y. F.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2011
, “
On Deformation Twinning in a 17.5% Mn–TWIP Steel: A Physically Based Phenomenological Model
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1402
1408
.
6.
Wang
,
S. H.
,
Liu
,
Z. Y.
,
Wang
,
G. D.
,
Liu
,
J. L.
,
Liang
,
G. F.
, and
Li
,
Q. L.
,
2010
, “
Effects of Twin-Dislocation and Twin-Twin Interactions on the Strain Hardening Behavior of TWIP Steels
,”
J. Iron Steel Res. Int.
,
17
(
12
), pp.
70
74
.
7.
Xu
,
L.
,
Barlat
,
F.
, and
Lee
,
M. G.
,
2012
, “
Hole Expansion of Twinning-Induced Plasticity Steel
,”
Scr. Mater.
,
66
(
12
), pp.
1012
1017
.
8.
Kılıç
,
S.
, and
Öztürk
,
F.
,
2016
, “
Comparison of Performances of Commercial TWIP900 and DP600 Advanced High Strength Steels in Automotive Industry
,”
J. Fac. Eng. Archit. Gazi Univ.
,
31
(
3
), pp.
567
578
.
9.
Billur
,
E.
,
Dykeman
,
J.
, and
Altan
,
T.
,
2014
, “
Three Generations of Advanced High-Strength Steels for Automotive Applications—Part II
,”
Stamping J.
,
664
(
2
), pp.
12
13
.
10.
Chung
,
K.
,
Ma
,
N.
,
Park
,
T.
,
Kim
,
D.
,
Yoo
,
D.
, and
Kim
,
C.
,
2011
, “
A Modified Damage Model for Advanced High Strength Steel Sheets
,”
Int. J. Plast.
,
27
(
10
), pp.
1485
1511
.
11.
Chen
,
L.
,
Kim
,
H. S.
,
Kim
,
S. K.
, and
De Cooman
,
B. C.
,
2007
, “
Localized Deformation Due to Portevin-Le Chatelier Effect in 18Mn-0.6C TWIP Austenitic Steel
,”
ISIJ Int.
,
47
(
12
), pp.
1804
1812
.
12.
Li
,
D.
,
Feng
,
Y.
,
Yin
,
Z.
,
Shangguan
,
F.
,
Wang
,
K.
,
Liu
,
Q.
, and
Hu
,
F.
,
2011
, “
Prediction of Hot Deformation Behaviour of Fe–25Mn–3Si–3Al TWIP Steel
,”
Mater. Sci. Eng. A
,
528
(
28
), pp.
8084
8089
.
13.
Vercammen
,
S.
,
Blanpain
,
B.
,
De Cooman
,
B. C.
, and
Wollants
,
P.
,
2004
, “
Cold Rolling Behaviour of an Austenitic Fe–30Mn–3Al–3Si TWIP-Steel: The Importance of Deformation Twinning
,”
Acta Mater.
,
52
(
7
), pp.
2005
2012
.
14.
Xu
,
S.
,
Ruan
,
D.
,
Beynon
,
J. H.
, and
Rong
,
Y. H.
,
2013
, “
Dynamic Tensile Behaviour of TWIP Steel Under Intermediate Strain Rate Loading
,”
Mater. Sci. Eng. A
,
573
(
15
), pp.
132
140
.
15.
Curtze
,
S.
, and
Kuokkala
,
V. T.
,
2010
, “
Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate
,”
Acta Mater.
,
58
(
15
), pp.
5129
5141
.
16.
Ahn
,
K.
,
Yoo
,
D.
,
Seo
,
M.
,
Park
,
S. H.
, and
Chung
,
K.
,
2009
, “
Springback Prediction of TWIP Automotive Sheets
,”
Met. Mater. Int.
,
15
(
4
), pp.
637
647
.
17.
Grässel
,
O.
,
Krüger
,
L.
,
Frommeyer
,
G.
, and
Meyer
,
L.
,
2000
, “
High Strength Fe–Mn–(Al, Si) TRIP/TWIP Steels Development—Properties—Application
,”
Int. J. Plast.
,
16
(
10
), pp.
1391
1409
.
18.
Bintu
,
A.
,
Vincze
,
G.
,
Picu
,
C. R.
,
Lopes
,
A. B.
,
Grácio
,
J. J.
, and
Barlat
,
F.
,
2015
, “
Strain Hardening Rate Sensitivity and Strain Rate Sensitivity in TWIP Steels
,”
Mater. Sci. Eng. A
,
629
(
10
), pp.
54
59
.
19.
Bouaziz
,
O.
,
Allain
,
S.
, and
Estrin
,
Y.
,
2010
, “
Effect of Pre-Strain at Elevated Temperature on Strain Hardening of Twinning-Induced Plasticity Steels
,”
Scr. Mater.
,
62
(
9
), pp.
713
715
.
20.
Curtze
,
S.
, and
Kuokkala
,
V.-T.
,
2010
, “
Effects of Temperature and Strain Rate on the Tensile Properties of TWIP Steels
,”
Matéria
,
15
(
2
), pp.
157
163
.
21.
Kim
,
J.-K.
,
Chen
,
L.
,
Kim
,
H.-S.
,
Kim
,
S.-K.
,
Estrin
,
Y.
, and
De Cooman
,
B. C.
,
2009
, “
On the Tensile Behavior of High-Manganese Twinning-Induced Plasticity Steel
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3147
3158
.
22.
Khosravifard
,
A.
,
2014
, “
Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels
,”
Iran. J. Mater. Form.
,
1
(
1
), pp.
1
10
.
23.
Ho
,
K.
, and
Krempl
,
E.
,
2000
, “
Modeling of Positive, Negative and Zero Rate Sensitivity by Using the Viscoplasticity Theory Based on Overstress (VBO)
,”
Mech. Time Depend. Mater.
,
4
(
1
), pp.
21
42
.
24.
Ahn
,
K.
,
Yoo
,
D.
,
Chung
,
K. H.
,
Seo
,
M. H.
,
Park
,
S. H.
, and
Chung
,
K.
,
2008
, “
Formability and Springback of TWIP Automotive Sheets
,”
Numisheet
, pp.
467
472
.
25.
Aspenberg
,
D.
,
Larsson
,
R.
, and
Nilsson
,
L.
,
2012
, “
An Evaluation of the Statistics of Steel Material Model Parameters
,”
J. Mater. Process. Technol.
,
212
(
6
), pp.
1288
1297
.
26.
Zhu
,
Y. X.
,
Liu
,
Y. L.
,
Yang
,
H.
, and
Li
,
H. P.
,
2012
, “
Development and Application of the Material Constitutive Model in Springback Prediction of Cold-Bending
,”
Mater. Des.
,
42
(
10
), pp.
245
258
.
27.
Toros
,
S.
,
Polat
,
A.
, and
Ozturk
,
F.
,
2012
, “
Formability and Springback Characterization of TRIP800 Advanced High Strength Steel
,”
Mater. Des.
,
41
(
9
), pp.
298
305
.
28.
Kilic
,
S.
,
Ozturk
,
F.
,
Sigirtmac
,
T.
, and
Tekin
,
G.
,
2015
, “
Effects of Pre-Strain and Temperature on Bake Hardening of TWIP900CR Steel
,”
J. Iron. Steel Res. Int.
,
22
(
4
), pp.
361
365
.
29.
ET Associates
,
2007
, “
eta/DYNAFORM Application Manual
,”
Engineering Technology Associates, Inc.
,
Troy, MI
.
30.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation
,
Springer
,
Berlin
.
31.
Akrout
,
M.
,
Amar
,
M. B.
,
Chaker
,
C.
, and
Dammak
,
F.
,
2008
, “
Numerical and Experimental Study of the Erichsen Test for Metal Stamping
,”
Adv. Prod. Eng. Manage.
,
3
(
2
), pp.
81
92
.
32.
Sebastijan
,
J.
, and
Silvia
,
G.
,
2011
, “
Deep Drawing Simulation of á-Titanium Alloys Using LS-DYNA
,” 8th European
LS-DYNA
Users Conference
, Strasbourg, France, May 23–24, Paper No. 5.
33.
Bílik
,
J.
,
Košťálová
,
M.
, and
Balážová
,
M.
,
2010
, “
Studies Properties and Formability of High-Strength Steel CP-W 800
,”
Ann. Fac. Eng. Hunedoara
,
2
(
1
), pp.
13
16
.
34.
Reisgen
,
U.
,
Schleser
,
M.
,
Mokrov
,
O.
, and
Ahmed
,
E.
,
2010
, “
Uni-and Bi-Axial Deformation Behavior of Laser Welded Advanced High Strength Steel Sheets
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2188
2196
.
35.
Huang
,
Y.
,
Zhao
,
A. M.
,
Mi
,
Z. L.
,
Jing
,
H. T.
,
Li
,
W. Y.
, and
Hui
,
Y. J.
,
2013
, “
Formability of Fe-Mn-C Twinning Induced Plasticity Steel
,”
J. Iron Steel Res. Int.
,
20
(
11
), pp.
111
117
.
36.
Nemat-Nasser
,
S.
and
Isaacs
,
J. B.
,
1997
, “
Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates With Application to Ta and TaW Alloys
,”
Acta Mater.
,
45
(
3
), pp.
907
919
.
37.
Dixon
,
P. R.
and
Parry
,
D. J.
,
1991
, “
Thermal Softening Effects in Type 224 Carbon Steel
,”
J. Phys. IV
,
1
(
C3
), pp.
85
92
.
38.
Jin
,
J. E.
, and
Lee
,
Y. K.
,
2012
, “
Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel
,”
Acta Mater.
,
60
(
4
), pp.
1680
1688
.
You do not currently have access to this content.