Application of steel fiber reinforced cementitious composites (SFRCC) in the construction of protective structures against extreme loading conditions, such as high-velocity impact and blasts, is an active area of research. It is a challenging task to capture the material behavior under such harsh conditions where strain rate of loading exceeds beyond 104 s−1. In this paper, an effort is made to simulate numerically the multihits of short projectiles on SFRCC panels. A total of 90 numbers of SFRCC panels consist of various core layer materials, thicknesses, fiber volumes, and angle of obliquity, are tested under high-velocity impacts of short projectiles. In numerical simulations, the boundary conditions and impact loading sequence are maintained, similar to that used during impact tests. In order to carry out a realistic numerical simulation, in-service munitions and ammunitions are used. The numerical response is found to corroborate with experimental results. It is observed that, if two consecutive hits are made within a distance of ten times the diameter of the projectile, then it is considered a case of multihit, else, it is considered as single hit case. The damage contours based on effective plastic strain are found to correlate with impact-tested SFRCC panels.

References

References
1.
Tai
,
Y. S.
,
2009
, “
Flat Ended Projectile Penetrating Ultra-High Strength Concrete Plate Target
,”
Theor. Appl. Fract. Mech.
,
51
(
2
), pp.
117
128
.
2.
Zhou
,
X. Q.
, and
Hao
,
H.
,
2009
, “
Mesoscale Modelling and Analysis of Damage and Fragmentation of Concrete Slab Under Contact Detonation
,”
Int. J. Impact Eng.
,
36
(
12
), pp.
1315
1326
.
3.
Naaman
,
A. E.
, and
Homrich
,
J. R.
,
1989
, “
Tensile Stress–Strain Properties of SIFCON
,”
ACI Mater. J.
,
86
(
3
), pp.
244
251
.
4.
Shah
,
A. A.
, and
Ribakov
,
Y.
,
2011
, “
Recent Trends in Steel Fibred High-Strength Concrete
,”
Mater. Des.
,
32
(8–9), pp.
4122
4151
.
5.
Soe
,
K. T.
,
Zhang
,
Y. X.
, and
Zhang
,
L. C.
,
2013
, “
Material Properties of a New Hybrid Fibre-Reinforced Engineered Cementitious Composite
,”
Constr. Build. Mater.
,
43
, pp.
399
407
.
6.
Zukas
,
J.
,
2004
,
Introduction to Hydrocodes
,
Elsevier B.V.
,
Amsterdam, The Netherlands
.
7.
Li
,
Q. M.
,
Reid
,
S. R.
,
Wen
,
H. M.
, and
Telford
,
A. R.
,
2005
, “
Local Impact Effects of Hard Missiles on Concrete Targets
,”
Int. J. Impact Eng.
,
32
(1–4), pp.
224
284
.
8.
Huang
,
F.
,
Wu
,
H.
,
Jin
,
Q.
, and
Zhang
,
Q.
,
2005
, “
A Numerical Simulation on the Perforation of Reinforced Concrete Targets
,”
Int. J. Impact Eng.
,
32
(1–4), pp.
173
187
.
9.
Agardh
,
L.
, and
Laine
,
L.
,
1999
, “
3D FE-Simulation of High-Velocity Fragment Perforation, of Reinforced Concrete Slabs
,”
Int. J. Impact Eng.
,
22
(9–10), pp.
911
922
.
10.
Beppu
,
M.
,
Miwa
,
K.
,
Itoh
,
M.
,
Katayama
,
M.
, and
Ohno
,
T.
,
2008
, “
Damage Evaluation of Concrete Plates by High-Velocity Impact
,”
Int. J. Impact Eng.
,
35
(
12
), pp.
1419
1426
.
11.
Cotsovos
,
D. M.
, and
Pavlovic
,
M. N.
,
2008
, “
Numerical Investigation of Concrete Subjected to Compressive Impact Loading—Part 1: A Fundamental Explanation for the Apparent Strength Gain at High Loading Rates
,”
Comput. Struct.
,
86
(1–2), pp.
145
163
.
12.
Liu
,
Y.
,
Ma
,
A.
, and
Huang
,
F.
,
2009
, “
Numerical Simulations of Oblique-Angle Penetration by Deformable Projectiles Into Concrete Targets
,”
Int. J. Impact Eng.
,
36
(
3
), pp.
438
446
.
13.
Farnam
,
Y.
,
Mohammadi
,
S.
, and
Shekarchi
,
M.
,
2010
, “
Experimental and Numerical Investigations of Low Velocity Impact Behavior of High-Performance Fiber-Reinforced Cement Based Composite
,”
Int. J. Impact Eng.
,
37
(
2
), pp.
220
229
.
14.
Leppanen
,
J.
,
2002
, “
Dynamic Behaviour of Concrete Structures Subjected to Blast and Fragment Impacts
,”
Degree of Licentiate of Engineering thesis
, Chalmers University of Technology, Goteborg, Sweden.
15.
Rempling
,
R.
,
2004
, “
Concrete Wall Subjected to Fragment Impacts-Numerical Analysis of Perforation and Scabbing
,” M.S. thesis, Chalmers University of Technology, Goteborg, Sweden.
16.
Wang
,
Z. L.
,
Wu
,
J.
, and
Wang
,
J. G.
,
2010
, “
Experimental and Numerical Analysis on Effect of Fibre Aspect Ratio on Mechanical Properties of SRFC
,”
Constr. Build. Mater.
,
24
(
4
), pp.
559
565
.
17.
Li
,
J.
, and
Zhang
,
Y. X.
,
2012
, “
Evaluation of Constitutive Models of Hybrid-Fibre Engineered Cementitious Composites Under Dynamic Loadings
,”
Constr. Build. Mater.
,
30
, pp.
149
160
.
18.
Luccioni
,
B.
,
Ruano
,
G.
,
Isla
,
F.
,
Zerbino
,
R.
, and
Giaccio
,
G.
,
2012
, “
A Simple Approach to Model SFRC
,”
Constr. Build. Mater.
,
37
, pp.
111
124
.
19.
Dancygier
,
A. N.
,
1998
, “
Rear Face Damage of Normal and High-Strength Concrete Elements Caused by Hard Projectile Impact
,”
ACI Struct. J.
,
95
(3), pp.
291
303
.
20.
Luo
,
X.
,
Sun
,
W.
, and
Chan
,
S. Y. N.
,
2000
, “
Characteristics of High-Performance Steel Fiber-Reinforced Concrete Subject to High Velocity Impact
,”
Cem. Concr. Res.
,
30
(
6
), pp.
907
914
.
21.
Maalej
,
M.
,
Quek
,
S. T.
, and
Zhang
,
J.
,
2005
, “
Behaviour of Hybrid-Fifer Engineered Cementitious Composites Subjected to Dynamic Tensile Loading and Projectile Impact
,”
J. Mater. Civ. Eng.
,
17
(
2
), pp.
143
152
.
22.
Teng
,
T. L.
,
Chu
,
Y. A.
,
Chang
,
F. A.
, and
Chin
,
H. S.
,
2004
, “
Simulation Model of Impact on Reinforced Concrete
,”
Cem. Concr. Res.
,
34
(
11
), pp.
2067
2077
.
23.
Amar, P.
,
Srinivasan
,
S. M.
, and
Rama Mohan Rao
,
A.
,
2014
, “
High Velocity Impact Behaviour of Layered Steel Fibre Reinforced Cementitious Composite (SFRCC) Panels
,”
CMC Tech Sci. J.
,
42
(
1
), pp.
75
102
.
24.
Amar, P.
,
2016
, “
Studies on Steel Fibre Reinforced Cementitious Composite (SFRCC) Panels Subjected to High Velocity Impact of Short Projectiles
,” Ph.D. thesis, Indian Institute of Technology Madras, Chennai, India.
25.
Nyström
,
U.
, and
Gylltoft
,
K.
,
2011
, “
Comparative Numerical Studies of Projectile Impacts on Plain and Steel-Fibre Reinforced Concrete
,”
Int. J. Impact Eng.
,
38
(2–3), pp.
95
105
.
26.
Riedel
,
W.
,
Kawai
,
N.
, and
Kondo
,
K.
,
2009
, “
Numerical Assessment for Impact Strength Measurements in Concrete Materials
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
283
293
.
27.
Borrvall
,
T.
, and
Riedel
,
W.
,
2011
, “
The RHT Concrete Model in LS-DYNA
,”
8th European LS-DYNA Users Conference
, Strasbourg, France, May 23–24.
28.
Tu
,
Z.
, and
Lu
,
Y.
,
2011
, “
Modifications of RHT Material Model for Improved Numerical Simulation of Dynamic Response of Concrete
,”
Int. J. Impact Eng.
,
37
(10), pp.
1072
1082
.
29.
CEB
,
1990
, “
Comite Euro-International du Beton
,” CEB-FIP Model Code 1990, Redwood Book, Trowbridge, UK.
30.
Iremonger
,
M. J.
,
2003
, “
Disruption of Small Arms Bullet Using Thin Metal Plates
,”
11th International Symposium on Interaction of the Effects of Munitions With Structures
, Mannheim, Germany, May 5–9.
31.
Ansys
,
2011
, “
Ansys Inc. AUTODYN Release Version 14.0
,” Canonsburg, PA.
32.
Amar, P.
,
Srinivasan
,
S. M.
, and
Rama Mohan Rao
,
A.
,
2015
, “
Numerical Investigation on Steel Fibre Reinforced Cementitious Composite Panels Subjected to High Velocity Impact Loading
,”
Mater. Des.
,
83
, pp.
164
175
.
33.
Dunne
,
F.
, and
Petrinic
,
N.
,
2004
,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.