Dielectric elastomers (DEs) have been attracting great attention in the field of electro-mechanical actuation and sensing. In this paper, we develop a new type of silicone-based DEs by incorporating multiwalled carbon nanotubes (MWNTs) to the DEs as fillers. The dispersion of MWNTs during the material processing plays a significant role in deciding the final properties of the nanocomposites. In this work, acetone and ultrasonication along with characterization tools such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are utilized to examine the MWNT dispersion quality within DE nanocomposites. Furthermore, microstructural MWNT dispersion and filler–matrix interfacial bonding as well as the overall dynamic mechanical responses are investigated to reveal the correlation between them. It is concluded that the processing of DE nanocomposites strongly affects the dynamic mechanical properties, which can inversely provide with microstructural information for the nanocomposites.

References

References
1.
Hou
,
Y.
,
Tang
,
J.
,
Zhang
,
H. B.
,
Qian
,
C.
,
Feng
,
Y. Y.
, and
Liu
,
J.
,
2009
, “
Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites
,”
ACS Nano
,
3
(
5
), pp.
1057
1062
.
2.
Huang
,
Y. Y.
, and
Terentjev
,
E. M.
,
2010
, “
Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites
,”
Adv. Funct. Mater.
,
20
(
23
), pp.
4062
4068
.
3.
Xu
,
X. J.
,
Thwe
,
M. M.
,
Shearwood
,
C.
, and
Liao
,
K.
,
2002
, “
Mechanical Properties and Interfacial Characteristics of Carbon-Nanotube-Reinforced Epoxy Thin Films
,”
Appl. Phys. Lett.
,
81
(
15
), pp.
2833
2835
.
4.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, and
Gun'ko
,
Y. K.
,
2006
, “
Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites
,”
Carbon
,
44
(
9
), pp.
1624
1652
.
5.
Shao
,
L. H.
,
Luo
,
R. Y.
,
Bai
,
S. L.
, and
Wang
,
J.
,
2009
, “
Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites With Waviness and Debonding
,”
Compos. Struct.
,
87
(
3
), pp.
274
281
.
6.
Bhuiyan
,
M. A.
,
Pucha
,
R. V.
,
Karevan
,
M.
, and
Kalaitzidou
,
K.
,
2011
, “
Tensile Modulus of Carbon Nanotube/Polypropylene Composites–A Computational Study Based on Experimental Characterization
,”
Comput. Mater. Sci.
,
50
(
8
), pp.
2347
2353
.
7.
Koh
,
S. J. A.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
94
(
26
), p.
262902
.
8.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
9.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Joseph
,
J.
,
Heydt
,
R.
,
Pei
,
Q. B.
, and
Chiba
,
S.
,
2000
, “
High-Field Deformation of Elastomeric Dielectrics for Actuators
,”
Mater. Sci. Eng., C
,
11
(
2
), pp.
89
100
.
10.
Kang
,
G.
,
Kim
,
K.-S.
, and
Kim
,
S.
,
2011
, “
Note: Analysis of the Efficiency of a Dielectric Elastomer Generator for Energy Harvesting
,”
Rev. Sci. Instrum.
,
82
(
4
), p.
046101
.
11.
O'Halloran
,
A.
,
O'Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.
12.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O'Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
.
13.
Pelrine
,
R.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
14.
Pelrine
,
R.
,
Sommer-Larsen
,
P.
,
Kornbluh
,
R.
,
Heydt
,
R.
,
Kofod
,
G.
,
Pei
,
Q. B.
, and
Gravesen
,
P.
,
2001
, “
Applications of Dielectric Elastomer Actuators
,”
Proc. SPIE
,
4329
, pp.
335
349
.
15.
O'Brien
,
B. M.
,
Calius
,
E. P.
,
Inamura
,
T.
,
Xie
,
S. Q.
, and
Anderson
,
I. A.
,
2010
, “
Dielectric Elastomer Switches for Smart Artificial Muscles
,”
Appl. Phys. A
,
100
(
2
), pp.
385
389
.
16.
Wang
,
L.
, and
Dang
,
Z. M.
,
2005
, “
Carbon Nanotube Composites With High Dielectric Constant at Low Percolation Threshold
,”
Appl. Phys. Lett.
,
87
(
4
), p.
042903
.
17.
Basu
,
R.
, and
Iannacchione
,
G. S.
,
2008
, “
Dielectric Response of Multiwalled Carbon Nanotubes as a Function of Applied AC-Electric Fields
,”
J. Appl. Phys.
,
104
(
11
), p.
114107
.
18.
Dang
,
Z. M.
,
Wang
,
L.
,
Yin
,
Y.
,
Zhang
,
Q.
, and
Lei
,
Q. Q.
,
2007
, “
Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites
,”
Adv. Mater.
,
19
(
6
), pp.
852
857
.
19.
Galantini
,
F.
,
Bianchi
,
S.
,
Castelvetro
,
V.
, and
Gallone
,
G.
,
2013
, “
Functionalized Carbon Nanotubes as a Filler for Dielectric Elastomer Composites With Improved Actuation Performance
,”
Smart Mater. Struct.
,
22
(
5
), p.
055025
.
20.
Wang
,
Y.
,
Kim
,
S.
,
Li
,
G. P.
, and
Sun
,
L. Z.
,
2015
, “
Filler Orientation Effect on Relative Permittivity of Dielectric Elastomer Nanocomposites Filled With Carbon Nanotubes
,”
Comput. Mater. Sci.
,
104
, pp.
69
75
.
21.
Pötschke
,
P.
,
Dudkin
,
S. M.
, and
Alig
,
I.
,
2003
, “
Dielectric Spectroscopy on Melt Processed Polycarbonate—Multiwalled Carbon Nanotube Composites
,”
Polymer
,
44
(
17
), pp.
5023
5030
.
22.
Dang
,
Z. M.
,
Wang
,
L.
,
Yin
,
Y.
,
Zhang
,
Q.
, and
Lei
,
Q. Q.
,
2007
, “
Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites
,”
Adv. Mater.
,
19
(
6
), pp.
852
857
.
23.
Underhill
,
R. S.
, and
Michalchuk
,
B. W.
,
2005
,
Carbon Nanotube-Elastomer Composites for Use in Dielectric Polymer Actuators
,
IEEE Computer Society
,
Los Alamitos, CA
.
24.
Ouyang
,
G.
,
Wang
,
K.
, and
Chen
,
X. Y.
,
2012
, “
TiO2 Nanoparticles Modified Polydimethylsiloxane With Fast Response Time and Increased Dielectric Constant
,”
J. Micromech. Microeng.
,
22
(
7
), p.
074002
.
25.
Huang
,
X.
,
Xie
,
L.
,
Hu
,
Z.
, and
Jiang
,
P.
,
2011
, “
Influence of BaTiO3 Nanoparticles on Dielectric, Thermophysical and Mechanical Properties of Ethylene-Vinyl Acetate Elastomer/BaTiO3 Microcomposites
,”
IEEE Trans. Dielectr. Electr. Insul.
,
18
(
2
), pp.
375
383
.
26.
Wang
,
Z. P.
,
Nelson
,
J. K.
,
Hillborg
,
H.
,
Zhao
,
S.
, and
Schadler
,
L. S.
,
2013
, “
Dielectric Constant and Breakdown Strength of Polymer Composites With High Aspect Ratio Fillers Studied by Finite Element Models
,”
Compos. Sci. Technol.
,
76
, pp.
29
36
.
27.
Yang
,
D.
,
Tian
,
M.
,
Dong
,
Y.
,
Kang
,
H.
,
Gong
,
D.
, and
Zhang
,
L.
,
2013
, “
A High-Performance Dielectric Elastomer Consisting of Bio-Based Polyester Elastomer and Titanium Dioxide Powder
,”
J. Appl. Phys.
,
114
(
15
), p.
154104
.
28.
Gallone
,
G.
,
Carpi
,
F.
,
De Rossi
,
D.
,
Levita
,
G.
, and
Marchetti
,
A.
,
2007
, “
Dielectric Constant Enhancement in a Silicone Elastomer Filled With Lead Magnesium Niobate–Lead Titanate
,”
Mater. Sci. Eng., C
,
27
(
1
), pp.
110
116
.
29.
Bai
,
Y.
,
Cheng
,
Z. Y.
,
Bharti
,
V.
,
Xu
,
H. S.
, and
Zhang
,
Q. M.
,
2000
, “
High-Dielectric-Constant Ceramic-Powder Polymer Composites
,”
Appl. Phys. Lett.
,
76
(
25
), pp.
3804
3806
.
30.
Shi
,
S. L.
, and
Liang
,
J.
,
2006
, “
Effect of Multiwall Carbon Nanotubes on Electrical and Dielectric Properties of Yttria-Stabilized Zirconia Ceramic
,”
J. Am. Ceram. Soc.
,
89
(
11
), pp.
3533
3535
.
31.
Iwamoto
,
M.
,
2012
,
Maxwell–Wagner Effect
,
Springer
,
Dordrecht, The Netherlands
.
32.
Tchmutin
,
I. A.
,
Ponomarenko
,
A. T.
,
Shevchenko
,
V. G.
,
Ryvkina
,
N. G.
,
Klason
,
C.
, and
McQueen
,
D. H.
,
1998
, “
Electrical Transport in 0-3 Epoxy Resin Barium Titanate Carbon Black Polymer Composites
,”
J. Polym. Sci., Part B: Polym. Phys.
,
36
(
11
), pp.
1847
1856
.
33.
Montazeri
,
A.
, and
Chitsazzadeh
,
M.
,
2014
, “
Effect of Sonication Parameters on the Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites
,”
Mater. Des.
,
56
, pp.
500
508
.
34.
Sun
,
L.
,
Warren
,
G. L.
,
O'Reilly
,
J. Y.
,
Everett
,
W. N.
,
Lee
,
S. M.
,
Davis
,
D.
,
Lagoudas
,
D.
, and
Sue
,
H.-J.
,
2008
, “
Mechanical Properties of Surface-Functionalized SWCNT/Epoxy Composites
,”
Carbon
,
46
(
2
), pp.
320
328
.
35.
Riggs
,
J. E.
,
Guo
,
Z. X.
,
Carroll
,
D. L.
, and
Sun
,
Y. P.
,
2000
, “
Strong Luminescence of Solubilized Carbon Nanotubes
,”
J. Am. Chem. Soc.
,
122
(
24
), pp.
5879
5880
.
36.
Paiva
,
M. C.
,
Zhou
,
B.
,
Fernando
,
K. A. S.
,
Lin
,
Y.
,
Kennedy
,
J. M.
, and
Sun
,
Y. P.
,
2004
, “
Mechanical and Morphological Characterization of Polymer-Carbon Nanocomposites From Functionalized Carbon Nanotubes
,”
Carbon
,
42
(
14
), pp.
2849
2854
.
37.
Qu
,
L. W.
,
Lin
,
Y.
,
Hill
,
D. E.
,
Zhou
,
B.
,
Wang
,
W.
,
Sun
,
X. F.
,
Kitaygorodskiy
,
A.
,
Suarez
,
M.
,
Connell
,
J. W.
,
Allard
,
L. F.
, and
Sun
,
Y.-P.
,
2004
, “
Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films
,”
Macromolecules
,
37
(
16
), pp.
6055
6060
.
38.
Mitchell
,
C. A.
,
Bahr
,
J. L.
,
Arepalli
,
S.
,
Tour
,
J. M.
, and
Krishnamoorti
,
R.
,
2002
, “
Dispersion of Functionalized Carbon Nanotubes in Polystyrene
,”
Macromolecules
,
35
(
23
), pp.
8825
8830
.
39.
Zeng
,
H. L.
,
Gao
,
C.
, and
Yan
,
D. Y.
,
2006
, “
Poly(Epsilon-Caprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties
,”
Adv. Funct. Mater.
,
16
(
6
), pp.
812
818
.
40.
Zhang
,
L.
,
Ni
,
Q. Q.
,
Natsuki
,
T.
, and
Fu
,
Y. Q.
,
2009
, “
Carbon Nanotubes/Magnetite Hybrids Prepared by a Facile Synthesis Process and Their Magnetic Properties
,”
Appl. Surf. Sci.
,
255
(
20
), pp.
8676
8681
.
41.
Shih
,
Y.-H.
, and
Li
,
M.-S.
,
2008
, “
Adsorption of Selected Volatile Organic Vapors on Multiwall Carbon Nanotubes
,”
J. Hazard. Mater.
,
154
(
1–3
), pp.
21
28
.
42.
Xie
,
X. L.
,
Mai
,
Y. W.
, and
Zhou
,
X. P.
,
2005
, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng., R
,
49
(
4
), pp.
89
112
.
43.
Ryszkowska
,
J.
,
Jurczyk-Kowalska
,
M.
,
Szymborski
,
T.
, and
Kurzydlowski
,
K. J.
,
2007
, “
Dispersion of Carbon Nanotubes in Polyurethane Matrix
,”
Phys. E
,
39
(
1
), pp.
124
127
.
44.
Varela-Rizo
,
H.
,
Rodriguez-Pastor
,
I.
, and
Martin-Gullon
,
I.
,
2012
, “
Effect of Solvent Nature in Casting-Based Carbon Nanofiber/Poly(Methyl-Methacrylate) Nanocomposites
,”
J. Appl. Polym. Sci.
,
125
(
4
), pp.
3228
3238
.
45.
Kazachkin
,
D.
,
Nishimura
,
Y.
,
Irle
,
S.
,
Morokuma
,
K.
,
Vidic
,
R. D.
, and
Borguet
,
E.
,
2008
, “
Interaction of Acetone With Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined Temperature Programmed Desorption and Theoretical Study
,”
Langmuir
,
24
(
15
), pp.
7848
7856
.
46.
Lee
,
C. U.
, and
Dadmun
,
M. D.
,
2008
, “
Improving the Dispersion and Interfaces in Polymer-Carbon Nanotube Nanocomposites by Sample Preparation Choice
,”
J. Polym. Sci., Part B: Polym. Phys.
,
46
(
16
), pp.
1747
1759
.
47.
Liao
,
Y. H.
,
Marietta-Tondin
,
O.
,
Liang
,
Z. Y.
,
Zhang
,
C.
, and
Wang
,
B.
,
2004
, “
Investigation of the Dispersion Process of SWNTs/SC-15 Epoxy Resin Nanocomposites
,”
Mater. Sci. Eng., A
,
385
(
1–2
), pp.
175
181
.
48.
Lau
,
K. T.
,
Lu
,
M.
,
Lam
,
C. K.
,
Cheung
,
H. Y.
,
Sheng
,
F. L.
, and
Li
,
H. L.
,
2005
, “
Thermal and Mechanical Properties of Single-Walled Carbon Nanotube Bundle-Reinforced Epoxy Nanocomposites: The Role of Solvent for Nanotube Dispersion
,”
Compos. Sci. Technol.
,
65
(
5
), pp.
719
725
.
49.
Li
,
R.
, and
Sun
,
L. Z.
,
2011
, “
Dynamic Mechanical Behavior of Magnetorheological Nanocomposites Filled With Carbon Nanotubes
,”
Appl. Phys. Lett.
,
99
(
13
), p.
131912
.
50.
Fiedler
,
B.
,
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Nolte
,
M. C. M.
, and
Schulte
,
K.
,
2006
, “
Fundamental Aspects of Nano-Reinforced Composites
,”
Compos. Sci. Technol.
,
66
(
16
), pp.
3115
3125
.
51.
Lu
,
K. L.
,
Lago
,
R. M.
,
Chen
,
Y. K.
,
Green
,
M. L. H.
,
Harris
,
P. J. F.
, and
Tsang
,
S. C.
,
1996
, “
Mechanical Damage of Carbon Nanotubes by Ultrasound
,”
Carbon
,
34
(
6
), pp.
814
816
.
52.
Bai
,
J. B.
, and
Allaoui
,
A.
,
2003
, “
Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites-Experimental Investigation
,”
Compos., Part A
,
34
(
8
), pp.
689
694
.
53.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
,
2000
, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
,
76
(
20
), pp.
2868
2870
.
54.
Breuer
,
O.
, and
Sundararaj
,
U.
,
2004
, “
Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites
,”
Polym. Compos.
,
25
(
6
), pp.
630
645
.
55.
Li
,
R.
, and
Sun
,
L. Z.
,
2013
, “
Viscoelastic Responses of Silicone-Rubber-Based Magnetorheological Elastomers Under Compressive and Shear Loadings
,”
ASME J. Eng. Mater. Technol.
,
135
(2), p.
021008
.
56.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2003
, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—I: Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1689
1703
.
57.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
,
2003
, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—II: Modeling Via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1705
1722
.
You do not currently have access to this content.