Motivated by the already developed micromechanical approach (Abdul-Latif et al., 2002, “Elasto-Inelastic Self-Consistent Model for Polycrystals,” ASME J. Appl. Mech., 69(3), pp. 309–316.), a new extension is proposed for describing the mechanical strength of ultrafine-grained (ufg) materials whose grain sizes, d, lie in the approximate range of 100 nm < d < 1000 nm as well as for the nanocrystalline (nc) materials characterized by d100nm. In fact, the dislocation kinematics approach is considered for characterizing these materials where grain boundary is taken into account by a thermal diffusion concept. The used model deals with a soft nonincremental inclusion/matrix interaction law. The overall kinematic hardening effect is described naturally by the interaction law. Within the framework of small deformations hypothesis, the elastic part, assumed to be uniform and isotropic, is evaluated at the granular level. The heterogeneous inelastic part of deformation is locally determined. In addition, the intragranular isotropic hardening is modeled based on the interaction between the activated slip systems within the same grain. Affected by the grain size, the mechanical behavior of the ufg as well as the nc materials is fairly well described. This development is validated through several uniaxial stress–strain experimental results of copper and nickel.

References

References
1.
Gleiter
,
H.
,
1982
, “
On the Microstructure of Grain Boundaries in Metals
,”
Mater. Sci. Eng.
,
52
(
2
), pp.
91
131
.
2.
Kumar
,
K. S.
,
Van Swygenhon
,
H.
, and
Suresh
,
S.
,
2003
, “
Mechanical Behavior of Nanocrystalline Metals and Alloys
,”
Acta Mater.
,
51
(
19
), pp.
5743
5774
.
3.
Meyers
,
M. A.
,
Mishra
,
A.
, and
Benson
,
D. J.
,
2006
, “
Mechanical Properties of Nanocrystalline Materials
,”
Prog. Mater. Sci.
,
51
(
4
), pp.
427
556
.
4.
Cheng
,
S.
,
Spencer
,
J. A.
, and
Milligan
,
W. W.
,
2003
, “
Strength and Tension/Compression Asymmetry in Nanostructured and Ultrafine-Grain Metals
,”
Acta Mater.
,
51
(
15
), pp.
4505
4518
.
5.
Conrad
,
H.
,
2003
, “
Grain Size Dependence of Plastic Deformation Kinetics in Copper
,”
Mater. Sci. Eng.
,
341
(
1–2
), pp.
216
228
.
6.
Hall
,
E. O.
,
1951
, “
Macroscopic Aspect of Lüders Band Deformation in Mild Steel
,”
Proc. R. Soc. London B
,
64
(
1
), p.
474
.
7.
Petch
,
N. J.
,
1954
, “
Fracture of Metals
,”
Prog. Met. Phys.
,
5
(
1
), pp.
1
52
.
8.
Tjong
,
S. C.
, and
Chen
,
H.
,
2004
, “
Nanocrystalline Materials and Coatings
,”
Mater. Sci. Eng.: R
,
45
(
1–2
), pp.
1
88
.
9.
Swygenhoven
,
H.
,
Derlet
,
P. M.
, and
Hasnaoui
,
A.
,
2002
, “
Atomic Mechanism for Dislocation Emission From Nano-Sized Grain Boundaries
,”
Phys. Rev. B
,
66
(
2
), p.
024101
.
10.
Swygenhoven
,
H.
,
Spaczer
,
M.
,
Caro
,
A.
, and
Farkas
,
D.
,
1999
, “
Competing Plastic Deformation Mechanisms in Nanophase Metals
,”
Phys. Rev. B
,
60
(
1
), p.
22
.
11.
Chokshi
,
A. H.
,
Rosen
,
A.
,
Karch
,
J.
, and
Gleiter
,
H.
,
1989
, “
On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials
,”
Scr. Metall.
,
23
(
10
), pp.
1679
1683
.
12.
Lu
,
K.
,
Wei
,
W. D.
, and
Wang
,
J. T.
,
1990
, “
Microhardness and Fracture Properties of Nanocrystalline Ni-P Alloy
,”
Scr. Metall. Mater.
,
24
(
12
), pp.
2319
2323
.
13.
Hahn
,
H.
, and
Padmanabhan
,
K. A.
,
1997
, “
A Model for the Deformation of Nanocrystalline Materials
,”
Philos. Mag. B
,
76
(
4
), pp.
559
571
.
14.
Nieh
,
T. G.
, and
Wadsworth
,
J.
,
1991
, “
Hall-Petch Relation in Nanocrystalline Solids
,”
Scr. Metall. Mater.
,
25
(
4
), pp.
955
958
.
15.
Lian
,
J.
,
Baudelet
,
B.
, and
Nazarov
,
A. A.
,
1993
, “
Model for the Prediction of the Mechanical Behavior of Nanocrystalline Materials
,”
Mater. Sci. Eng.: A
,
172
(
1–2
), pp.
23
29
.
16.
Wang
,
N.
,
Wang
,
Z.
,
Aust
,
K. T.
, and
Erb
,
U.
,
1995
, “
Effect of Grain Size on the Mechanical Properties on Nanocrystalline Materials
,”
Acta Metall. Mater.
,
43
(
2
), pp.
519
528
.
17.
Cao
,
W. Q.
,
Dirras
,
G.
,
Benyoucef
,
M.
, and
Bacroix
,
B.
,
2007
, “
Room Temperature Deformation Mechanisms in Ultrafine-Grained Materials Processed by Hot Isostatic Pressing
,”
Mater. Sci. Eng.
,
462
(
1–2
), pp.
100
105
.
18.
Wang
,
Y. M.
,
Hamza
,
A. V.
, and
Ma
,
E.
,
2006
, “
Temperature-Dependent Strain Rate Sensitivity and Activation Volume of Nanocrystalline Ni
,”
Acta Mater.
,
54
(
10
), pp.
2715
2726
.
19.
Champion
,
Y.
,
2013
, “
Computing Regimes of Rate Dependent Plastic Flow in Ultrafine Grained Metals
,”
Mater. Sci. Eng.
,
560
, pp.
315
320
.
20.
Acharya
,
A.
, and
Beaudoin
,
A. J.
,
2000
, “
Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains
,”
J. Mech. Phys. Solids
,
48
(
10
), pp.
2213
2230
.
21.
Aoyagi
,
Y.
, and
Shizawa
,
K.
,
2007
, “
Multiscale Crystal Plasticity Modeling Based on Geometrically Necessary Crystal Defects and Simulation on Fine-Graining for Polycrystal
,”
Int. J. Plast.
,
23
(
6
), pp.
1022
1040
.
22.
Zhu
,
B.
,
Asaro
,
R.
, and
Krysl
,
P.
,
2006
, “
Effects of Grain Size Distribution on the Mechanical Response of Nanocrystalline Metals: Part II
,”
Acta Mater.
,
54
(
12
), pp.
3307
3320
.
23.
Weng
,
G. J.
,
1983
, “
A Micromechanical Theory of Grain-Size Dependence in Metal Plasticity
,”
J. Mech. Phys. Solids
,
31
(
3
), pp.
193
203
.
24.
Jiang
,
B.
, and
Weng
,
G. J.
,
2004
, “
A Generalized Self Consistent Polycrystal Model for the Yield Strength of Nanocrystalline Materials
,”
J. Mech. Phys. Solids
,
52
(
5
), pp.
1125
1149
.
25.
Abdul-Latif
,
A.
,
Dirras
,
G. F.
,
Ramtani
,
S.
, and
Hocini
,
A.
,
2009
, “
A New Concept for Producing Ultrafine Grained Metallic Structures Via an Intermediate Strain Rate: Experiments and Modeling
,”
Int. J. Mech. Sci.
,
51
(
11–12
), pp.
797
806
.
26.
Carsley
,
J. E.
,
Ning
,
J.
,
Milligan
,
W. M.
,
Hackney
,
S. A.
, and
Aifantis
,
E. C.
,
1995
, “
A Simple, Mixtures-Based Model for the Grain Size Dependence of Strength in Nanophase Metals
,”
Nanostruct. Mater.
,
5
(
4
), pp.
441
448
.
27.
Kim
,
H. S.
,
1998
, “
A Composite Model for Mechanical Properties of Nanocrystalline Materials
,”
Scr. Mater.
,
39
(
8
), pp.
1057
1061
.
28.
Kim
,
H. S.
, and
Bush
,
M. B.
,
1999
, “
The Effects of Grain Size and Porosity on the Elastic Modulus of Nanocrystalline Materials
,”
Nanostruct. Mater.
,
11
(
3
), pp.
361
367
.
29.
Kim
,
H. S.
,
Bush
,
M. B.
, and
Estrin
,
Y.
,
2000
, “
A Phase Mixture Model of a Particle Reinforced Composite With Fine Microstructure
,”
Mater. Sci. Eng.: A
,
276
(
1–2
), pp.
175
185
.
30.
Kim
,
H. S.
,
Estrin
,
Y.
, and
Bush
,
M. B.
,
2001
, “
Constitutive Modelling of Strength and Plasticity of Nanocrystalline Metallic Materials
,”
Mater. Sci. Eng.: A
,
316
(
1–2
), pp.
195
199
.
31.
Kim
,
H. S.
, and
Estrin
,
Y.
,
2001
, “
Ductility of Ultrafine Grained Copper
,”
Appl. Phys. Lett.
,
79
(
25
), pp.
4115
4117
.
32.
Schwaiger
,
R.
,
Moser
,
B.
,
Dao
,
M.
,
Chollacoop
,
N.
, and
Suresh
,
S.
,
2003
, “
Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel
,”
Acta Mater.
,
51
(
17
), pp.
5159
5172
.
33.
Kim
,
H. S.
, and
Estrin
,
Y.
,
2005
, “
Phase Mixture Modeling of the Strain Rate Dependent Mechanical Behavior of Nanostructured Materials
,”
Acta Mater.
,
53
(
3
), pp.
765
772
.
34.
Ramtani
,
S.
,
Bui
,
Q. H.
, and
Dirras
,
G.
,
2009
, “
A Revisited Generalized Self-consistent Polycrystal Model Following an Incremental Small Strain Formulation and Including Grain-Size Distribution Effect
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
537
553
.
35.
Ramtani
,
S.
,
Dirras
,
G.
, and
Bui
,
Q. H.
,
2010
, “
A Bimodal Bulk Ultrafine-Grained Nickel: Experimental and Micromechanical Investigations
,”
Mech. Mater.
,
42
(
5
), pp.
522
536
.
36.
Voyiadjis
,
G. Z.
, and
Deliktas
,
B.
,
2010
, “
Modeling of Strengthening and Softening in Inelastic Nanocrystalline Materials With Reference to the Triple Junction and Grain Boundaries Using Strain Gradient Plasticity
,”
Acta Mech.
,
213
(
1
), pp.
3
26
.
37.
El-Awady
,
J. A.
,
Wen
,
M.
, and
Ghoniem
,
N. M.
,
2009
, “
The Role of the Weakest-Link Mechanism in Controlling the Plasticity of Micropillars
,”
J. Mech. Phys. Solids
,
57
(
1
), pp.
32
50
.
38.
El-Awady
,
J. A.
,
Uchic
,
M. D.
,
Shade
,
P. A.
,
Kim
,
S.-L.
,
Rao
,
S. I.
,
Dimiduk
,
D. M.
, and
Woodward
,
C.
,
2013
, “
Pre-Straining Effects on the Power-Law Scaling of Size-Dependent Strengthening in Ni Single Crystals
,”
Scr. Mater.
,
68
(
3–4
), pp.
207
210
.
39.
El-Awady
,
J. A.
,
2014
, “
Unravelling the Physics of Size-Dependent Dislocation-Mediated Plasticity
,”
Nat. Commun.
,
6
, p.
5926
.
40.
Sansoz
,
F.
,
2011
, “
Atomistic Processes Controlling Flow Stress Scaling During Compression of Nanoscale Face-Centered-Cubic Crystals
,”
Acta Mater.
,
59
(
9
), pp.
3364
3372
.
41.
Voyiadjis
,
G. Z.
, and
Yaghoobi
,
M.
,
2015
, “
Large Scale Atomistic Simulation of Size Effects During Nanoindentation: Dislocation Length and Hardness
,”
Mater. Sci. Eng.: A
,
634
, pp.
20
31
.
42.
Voyiadjis
,
G. Z.
, and
Yaghoobi
,
M.
,
2016
, “
Role of Grain Boundary on the Sources of Size Effects
,”
Comput. Mater. Sci.
,
117
, pp.
315
329
.
43.
Yaghoobi
,
M.
, and
Voyiadjis
,
G. Z.
,
2016
, “
Atomistic Simulation of Size Effects in Single-Crystalline Metals of Confined Volumes During Nanoindentation
,”
Comput. Mater. Sci.
,
111
, pp.
64
73
.
44.
Malygin
,
G. A.
,
2007
, “
Plasticity and Strength of Micro- and Nanocrystalline Materials
,”
Phys. Solid State
,
49
(
6
), pp.
1013
1033
.
45.
Malygin
,
G. A.
,
2007
, “
Analysis of the Strain-Rate Sensitivity of Flow Stresses in Nanocrystalline FCC and BCC Metals
,”
Phys. Solid State
,
49
(
12
), pp.
2266
2273
.
46.
Malygin
,
G. A.
,
2008
, “
Effect of Grain Size Dispersion on the Strength and Plasticity of Nanocrystalline Metals
,”
Phys. Solid State
,
50
(
6
), pp.
1056
1060
.
47.
Abdul-Latif
,
A.
,
Dingli
,
J. P.
, and
Saanouni
,
K.
,
2002
, “
Elasto-Inelastic Self-Consistent Model for Polycrystals
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
309
316
.
48.
Abdul-Latif
,
A.
,
2004
, “
Pertinence of the Grains Aggregate Type on the Self-Consistent Model Response
,”
Int. J. Solids Struct.
,
41
(
2
), pp.
305
322
.
49.
Saanouni
,
K.
, and
Abdul-Latif
,
A.
,
1996
, “
Micromechanical Modeling of Low Cyclic Fatigue Under Complex Loadings-Part I
,”
Int. J. Plast.
,
12
(
9
), pp.
1111
1121
.
50.
Cailletaud
,
G.
,
1992
, “
A Micromechanical Approach to Inelastic Behavior of Metals
,”
Int. J. Plast.
,
8
(
1
), pp.
55
73
.
51.
Molinari
,
A.
,
Ahzi
,
S.
, and
Kouddane
,
R.
,
1997
, “
On the Self-Consistent Modeling of Elasto-Plastic Behavior of Polycrystals
,”
Mech. Mater.
,
26
(
1
), pp.
43
62
.
52.
Kouddane
,
R.
,
Molinari
,
A.
, and
Canova
,
G. R.
,
1993
, “
Self-Consistent Modeling of Heterogeneous Viscoelastic and Elasto-Viscoplastic Materials
,”
Large Plastic Deformation: Fundamentals and Applications to Metal Forming
,
C.
Teodosiu
,
J. L.
Raphanel
, and
F.
Sidoroff
, eds.,
Balkema
, Mecamat 91, p.
121
.
53.
François
,
D.
,
Pineau
,
A.
, and
Zaoui
,
A.
,
1993
,
Comportement Mécanique des Matériaux
,
Hermes
,
Paris, France
.
54.
Molinari
,
A.
,
Canova
,
G. R.
, and
Ahzi
,
S.
,
1987
, “
A Self-Consistent Approach of the Large Deformation Viscoplasticity
,”
Acta Metall.
,
35
(
12
), pp.
2983
2994
.
55.
Galindo-Nava
,
E. I.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2012
, “
A Thermostatistical Theory of Low and High Temperature Deformation in Metal
,”
Mater. Sci. Eng.: A
,
543
, pp.
110
116
.
56.
Li
,
J.
, and
Soh
,
A. K.
,
2012
, “
Modeling of the Plastic Deformation of Nanostructured Materials With Grain Size Gradient
,”
Int. J. Plast.
,
39
, pp.
88
102
.
57.
Lavrentev
,
F.
,
1980
, “
The Type of Dislocation Interaction as the Factor Determining Work Hardening
,”
Mater. Sci. Eng.
,
46
(
2
), pp.
191
208
.
58.
Mandel
,
J.
,
1965
, “
Une Généralisation de la Théorie de la Plasticité de W. T. Koiter
,”
Int. J. Solids Struct.
,
1
(
3
), pp.
273
295
.
59.
Hill
,
R.
,
1966
, “
Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip
,”
J. Mech. Phys. Solids
,
14
(
2
), pp.
95
102
.
60.
Mandel
,
J.
,
1971
,
Plasticité Classique et Viscoplasticité, Cours CISM, Udine, No. 97
,
Springer Verlag
,
Berlin
.
61.
Sanders
,
P. G.
,
Eastman
,
J. A.
, and
Weertman
,
J. R.
,
1997
, “
Elastic and Tensile Behavior of Nano-Crystalline Copper and Palladium
,”
Acta Mater.
,
45
(
10
), pp.
4019
4025
.
62.
Masumura
,
R. A.
,
Hazzledine
,
P. M.
, and
Pande
,
C. S.
,
1998
, “
Yield Stress of Fine Grained Materials
,”
Acta Mater.
,
46
(
13
), pp.
4527
4534
.
63.
Wolf
,
D.
,
Yamakov
,
V.
,
Phillpot
,
S. R.
,
Mukherjee
,
A.
, and
Gleiter
,
H.
,
2005
, “
Deformation of Nanocrystalline Materials by Molecular-Dynamics Simulation: Relationship to Experiments?
,”
Acta Mater.
,
53
(
1
), pp.
1
40
.
You do not currently have access to this content.