This paper presents a two-way linked computational multiscale model and its application to predict the mechanical behavior of bone subjected to viscoelastic deformation and fracture damage. The model is based on continuum thermos-mechanics and is implemented through the finite element method (FEM). Two physical length scales (the global scale of bone and local scale of compact bone) were two-way coupled in the framework by linking a homogenized global object to heterogeneous local-scale representative volume elements (RVEs). Multiscaling accounts for microstructure heterogeneity, viscoelastic deformation, and rate-dependent fracture damage at the local scale in order to predict the overall behavior of bone by using a viscoelastic cohesive zone model incorporated with a rate-dependent damage evolution law. In particular, age-related changes in material properties and geometries in bone were considered to investigate the effect of aging, loading rate, and damage evolution characteristics on the mechanical behavior of bone. The model successfully demonstrated its capability to predict the viscoelastic response and fracture damage due to different levels of aging, loading conditions (such as rates), and microscale damage evolution characteristics with only material properties of each constituent in the RVEs.

References

References
1.
Nalla
,
R.
,
Kruzic
,
J.
,
Kinney
,
J.
,
Balooch
,
M.
,
Ager
,
J.
, and
Ritchie
,
R.
,
2006
, “
Role of Microstructure in the Aging-Related Deterioration of the Toughness of Human Cortical Bone
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1251
1260
.
2.
Burr
,
D. B.
,
Forwood
,
M. R.
,
Fyhrie
,
D. P.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Turner
,
C. H.
,
1997
, “
Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures
,”
J. Bone Miner. Res.
,
12
(
1
), pp.
6
15
.
3.
Licata
,
A.
,
2009
, “
Bone Density Versus Bone Quality: What's a Clinician to Do?
,”
Cleveland Clin. J. Med.
,
76
(
6
), pp.
331
336
.
4.
Ritchie
,
R. O.
,
Buehler
,
M. J.
, and
Hansma
,
P.
,
2009
, “
Plasticity and Toughness in Bone
,”
Phys. Today
,
62
(
6
), pp.
41
47
.
5.
Brown
,
C. U.
,
Yeni
,
Y. N.
, and
Norman
,
T. L.
,
2000
, “
Fracture Toughness is Dependent on Bone Location—A Study of the Femoral Neck, Femoral Shaft, and the Tibial Shaft
,”
J. Biomed. Mater. Res.
,
49
(
3
), pp.
380
389
.
6.
Koester
,
K. J.
,
Ager
,
J.
, and
Ritchie
,
R.
,
2008
, “
The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks
,”
Nat. Mater.
,
7
(
8
), pp.
672
677
.
7.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nat. Mater.
,
2
(
3
), pp.
164
168
.
8.
Nalla
,
R. K.
,
Kruzic
,
J. J.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2004
, “
Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves
,”
Bone
,
35
(
6
), pp.
1240
1246
.
9.
Pistoia
,
W.
,
Van Rietbergen
,
B.
,
Lochmüller
,
E.-M.
,
Lill
,
C.
,
Eckstein
,
F.
, and
Rüegsegger
,
P.
,
2002
, “
Estimation of Distal Radius Failure Load With Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone
,
30
(
6
), pp.
842
848
.
10.
MacNeil
,
J. A.
, and
Boyd
,
S. K.
,
2008
, “
Bone Strength at the Distal Radius Can Be Estimated From High-Resolution Peripheral Quantitative Computed Tomography and the Finite Element Method
,”
Bone
,
42
(
6
), pp.
1203
1213
.
11.
Boutroy
,
S.
,
Van Rietbergen
,
B.
,
Sornay-Rendu
,
E.
,
Munoz
,
F.
,
Bouxsein
,
M. L.
, and
Delmas
,
P. D.
,
2008
, “
Finite Element Analysis Based on In Vivo HR-pQCT Images of the Distal Radius is Associated With Wrist Fracture in Postmenopausal Women
,”
J. Bone Miner. Res.
,
23
(
3
), pp.
392
399
.
12.
Hogan
,
H. A.
,
1992
, “
Micromechanics Modeling of Haversian Cortical Bone Properties
,”
J. Biomech.
,
25
(
5
), pp.
549
556
.
13.
Mullins
,
L.
,
McGarry
,
J.
,
Bruzzi
,
M.
, and
McHugh
,
P.
,
2007
, “
Micromechanical Modelling of Cortical Bone
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
159
169
.
14.
Abdel-Wahab
,
A. A.
,
Maligno
,
A. R.
, and
Silberschmidt
,
V. V.
,
2012
, “
Micro-Scale Modelling of Bovine Cortical Bone Fracture: Analysis of Crack Propagation and Microstructure Using X-FEM
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
128
135
.
15.
Li
,
S.
,
Abdel-Wahab
,
A.
,
Demirci
,
E.
, and
Silberschmidt
,
V. V.
,
2013
, “
Fracture Process in Cortical Bone: X-FEM Analysis of Microstructured Models
,”
Int. J. Fract.
,
184
(
1–2
), pp.
43
55
.
16.
Mischinski
,
S.
, and
Ural
,
A.
,
2013
, “
Interaction of Microstructure and Microcrack Growth in Cortical Bone: A Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
1
), pp.
81
94
.
17.
Ural
,
A.
, and
Mischinski
,
S.
,
2013
, “
Multiscale Modeling of Bone Fracture Using Cohesive Finite Elements
,”
Eng. Fract. Mech.
,
103
, pp.
141
152
.
18.
Feyel
,
F.
,
1999
, “
Multiscale FE 2 Elastoviscoplastic Analysis of Composite Structures
,”
Comput. Mater. Sci.
,
16
(
1
), pp.
344
354
.
19.
Feyel
,
F.
, and
Chaboche
,
J.-L.
,
2000
, “
FE 2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC/Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3
), pp.
309
330
.
20.
Fish
,
J.
, and
Belsky
,
V.
,
1995
, “
Multi-Grid Method for Periodic Heterogeneous Media Part 2: Multiscale Modeling and Quality Control in Multidimensional Case
,”
Comput. Methods Appl. Mech. Eng.
,
126
(
1
), pp.
17
38
.
21.
Fish
,
J.
, and
Shek
,
K.
,
2000
, “
Multiscale Analysis of Composite Materials and Structures
,”
Compos. Sci. Technol.
,
60
(
12
), pp.
2547
2556
.
22.
Fish
,
J.
, and
Wagiman
,
A.
,
1993
, “
Multiscale Finite Element Method for a Locally Nonperiodic Heterogeneous Medium
,”
Comput. Mech.
,
12
(
3
), pp.
164
180
.
23.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
,
2001
, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
,
38
(
14
), pp.
2335
2385
.
24.
Haj-Ali
,
R. M.
, and
Muliana
,
A. H.
,
2004
, “
A Multi-Scale Constitutive Formulation for the Nonlinear Viscoelastic Analysis of Laminated Composite Materials and Structures
,”
Int. J. Solids Struct.
,
41
(
13
), pp.
3461
3490
.
25.
Kim
,
Y.-R.
,
Souza
,
F. V.
, and
Teixeira
,
J. E. S. L.
,
2013
, “
A Two-Way Coupled Multiscale Model for Predicting Damage-Associated Performance of Asphaltic Roadways
,”
Comput. Mech.
,
51
(
2
), pp.
187
201
.
26.
Lee
,
K.
,
Moorthy
,
S.
, and
Ghosh
,
S.
,
1999
, “
Multiple Scale Computational Model for Damage in Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
172
(
1
), pp.
175
201
.
27.
Oden
,
J. T.
,
Vemaganti
,
K.
, and
Moës
,
N.
,
1999
, “
Hierarchical Modeling of Heterogeneous Solids
,”
Comput. Methods Appl. Mech. Eng.
,
172
(
1
), pp.
3
25
.
28.
Oden
,
J. T.
, and
Zohdi
,
T. I.
,
1997
, “
Analysis and Adaptive Modeling of Highly Heterogeneous Elastic Structures
,”
Comput. Methods Appl. Mech. Eng.
,
148
(
3
), pp.
367
391
.
29.
Raghavan
,
P.
,
Moorthy
,
S.
,
Ghosh
,
S.
, and
Pagano
,
N.
,
2001
, “
Revisiting the Composite Laminate Problem With an Adaptive Multi-Level Computational Model
,”
Compos. Sci. Technol.
,
61
(
8
), pp.
1017
1040
.
30.
Ghanbari
,
J.
, and
Naghdabadi
,
R.
,
2009
, “
Nonlinear Hierarchical Multiscale Modeling of Cortical Bone Considering Its Nanoscale Microstructure
,”
J. Biomech.
,
42
(
10
), pp.
1560
1565
.
31.
Hamed
,
E.
, and
Jasiuk
,
I.
,
2013
, “
Multiscale Damage and Strength of Lamellar Bone Modeled by Cohesive Finite Elements
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
94
110
.
32.
Adharapurapu
,
R. R.
,
Jiang
,
F.
, and
Vecchio
,
K. S.
,
2006
, “
Dynamic Fracture of Bovine Bone
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1325
1332
.
33.
Crowninshield
,
R.
, and
Pope
,
M.
,
1974
, “
The Response of Compact Bone in Tension at Various Strain Rates
,”
Ann. Biomed. Eng.
,
2
(
2
), pp.
217
225
.
34.
Katsamanis
,
F.
, and
Raftopoulos
,
D. D.
,
1990
, “
Determination of Mechanical Properties of Human Femoral Cortical Bone by the Hopkinson Bar Stress Technique
,”
J. Biomech.
,
23
(
11
), pp.
1173
1184
.
35.
Lewis
,
J.
, and
Goldsmith
,
W.
,
1975
, “
The Dynamic Fracture and Prefracture Response of Compact Bone by Split Hopkinson Bar Methods
,”
J. Biomech.
,
8
(
1
), pp.
27
40
.
36.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), pp.
1231
1236
.
37.
Melnis
,
A.
, and
Knets
,
I.
,
1982
, “
Effect of the Rate of Deformation on the Mechanical Properties of Compact Bone Tissue
,”
Mech. Compos. Mater.
,
18
(
3
), pp.
358
363
.
38.
Roberts
,
V.
, and
Melvin
,
J.
, “
The Measurement of the Dynamic Mechanical Properties of Human Skull Bone
,”
Applied Polymer Symposia
, pp.
235
247
.
39.
Tennyson
,
R.
,
Ewert
,
R.
, and
Niranjan
,
V.
,
1972
, “
Dynamic Viscoelastic Response of Bone
,”
Exp. Mech.
,
12
(
11
), pp.
502
507
.
40.
Wood
,
J. L.
,
1971
, “
Dynamic Response of Human Cranial Bone
,”
J. Biomech.
,
4
(
1
), pp.
1
12
.
41.
Wright
,
T.
, and
Hayes
,
W.
,
1976
, “
Tensile Testing of Bone Over a Wide Range of Strain Rates: Effects of Strain Rate, Microstructure and Density
,”
Med. Biol. Eng.
,
14
(
6
), pp.
671
680
.
42.
Allen
,
D. H.
, and
Searcy
,
C. R.
,
2001
, “
A Micromechanical Model for a Viscoelastic Cohesive Zone
,”
Int. J. Fract.
,
107
(
2
), pp.
159
176
.
43.
Yoon
,
C.
, and
Allen
,
D. H.
,
1999
, “
Damage Dependent Constitutive Behavior and Energy Release Rate for a Cohesive Zone in a Thermoviscoelastic Solid
,”
Int. J. Fract.
,
96
(
1
), pp.
55
74
.
44.
Allen
,
D. H.
, and
Searcy
,
C. R.
,
2000
, “
Numerical Aspects of a Micromechanical Model of a Cohesive Zone
,”
J. Reinforced Plast. Compos.
,
19
(
3
), pp.
240
248
.
45.
Savalli
,
U.
,
2013
, “
Cross Section of a Bone
,” Arizona State University, Phoenix, AZ, accessed Mar. 3, 2016, http://www.Savalli.us/BIO201/Labs/05-Bones/BoneHistologyLabel.Html
46.
Pearson Education
,
2004
, “
Microscopic Structure of Bone
,” Pearson PLC, London, accessed Mar. 3, 2016, http://www.Worcesterthinktank.com/Sites/wtk.Drupalgardens.com/Files/Uploads/APcompANDspongyBone.pdf
47.
Williams
,
J. J.
,
2002
, “
Two Experiments for Measuring Specific Viscoelastic Cohesive Zone Parameters
,” Master's thesis, Texas A & M University, College Station, TX.
48.
Allen
,
D. H.
,
2001
, “
Homogenization Principles and Their Application to Continuum Damage Mechanics
,”
Compos. Sci. Technol.
,
61
(
15
), pp.
2223
2230
.
49.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
2013
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
, Amsterdam, The Netherlands.
50.
Allen
,
D.
, and
Yoon
,
C.
,
1998
, “
Homogenization Techniques for Thermoviscoelastic Solids Containing Cracks
,”
Int. J. Solids Struct.
,
35
(
31
), pp.
4035
4053
.
51.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(
4
), pp.
1152
1211
.
52.
Lakes
,
R. S.
,
Katz
,
J. L.
, and
Sternstein
,
S. S.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone—I. Torsional and Biaxial Studies
,”
J. Biomech.
,
12
(
9
), pp.
657
678
.
53.
Jansen
,
L. E.
,
Birch
,
N. P.
,
Schiffman
,
J. D.
,
Crosby
,
A. J.
, and
Peyton
,
S. R.
,
2015
, “
Mechanics of Intact Bone Marrow
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
299
307
.
54.
Van Rietbergen
,
B.
,
Majumdar
,
S.
,
Pistoia
,
W.
,
Newitt
,
D.
,
Kothari
,
M.
,
Laib
,
A.
, and
Ruegsegger
,
P.
,
1998
, “
Assessment of Cancellous Bone Mechanical Properties From Micro-FE Models Based on Micro-CT, pQCT and MR Images
,”
Technol. Health Care
,
6
(
5–6
), pp.
413
420
.
55.
Parfitt
,
A.
,
Mathews
,
C.
,
Villanueva
,
A.
,
Kleerekoper
,
M.
,
Frame
,
B.
, and
Rao
,
D.
,
1983
, “
Relationships Between Surface, Volume, and Thickness of Iliac Trabecular Bone in Aging and in Osteoporosis. Implications for the Microanatomic and Cellular Mechanisms of Bone Loss
,”
J. Clin. Invest.
,
72
(
4
), pp.
1396
1409
.
56.
Russo
,
C.
,
Lauretani
,
F.
,
Bandinelli
,
S.
,
Bartali
,
B.
,
Di Iorio
,
A.
,
Volpato
,
S.
,
Guralnik
,
J.
,
Harris
,
T.
, and
Ferrucci
,
L.
,
2003
, “
Aging Bone in Men and Women: Beyond Changes in Bone Mineral Density
,”
Osteoporosis Int.
,
14
(
7
), pp.
531
538
.
57.
Bernhard
,
A.
,
Milovanovic
,
P.
,
Zimmermann
,
E.
,
Hahn
,
M.
,
Djonic
,
D.
,
Krause
,
M.
,
Breer
,
S.
,
Püschel
,
K.
,
Djuric
,
M.
, and
Amling
,
M.
,
2013
, “
Micro-Morphological Properties of Osteons Reveal Changes in Cortical Bone Stability During Aging, Osteoporosis, and Bisphosphonate Treatment in Women
,”
Osteoporosis Int.
,
24
(
10
), pp.
2671
2680
.
58.
Giner
,
E.
,
Arango
,
C.
,
Vercher
,
A.
, and
Fuenmayor
,
F. J.
,
2014
, “
Numerical Modelling of the Mechanical Behaviour of an Osteon With Microcracks
,”
J. Mech. Behav. Biomed. Mater.
,
37
, pp.
109
124
.
59.
Wang
,
X.
,
Osborn
,
R.
,
Wolf
,
J.
, and
Puram
,
S.
, “
Age-Related Changes in the Mechanical Properties of Interstitial Bone Tissues
,”
50th Annual Meeting of the Orthopaedic Research Society
, p. 0037.
60.
Green
,
J. O.
,
Wang
,
J.
,
Diab
,
T.
,
Vidakovic
,
B.
, and
Guldberg
,
R. E.
,
2011
, “
Age-Related Differences in the Morphology of Microdamage Propagation in Trabecular Bone
,”
J. Biomech.
,
44
(
15
), pp.
2659
2666
.
61.
Launey
,
M. E.
,
Buehler
,
M. J.
, and
Ritchie
,
R. O.
,
2010
, “
On the Mechanistic Origins of Toughness in Bone
,”
Annu. Rev. Mater. Res.
,
40
, pp.
25
53
.
62.
Sanborn
,
B.
,
Gunnarsson
,
C.
,
Foster
,
M.
, and
Weerasooriya
,
T.
,
2014
, “
Quantitative Visualization of Human Cortical Bone Mechanical Response: Studies on the Anisotropic Compressive Response and Fracture Behavior as a Function of Loading Rate
,”
Exp. Mech.
,
56
(
1
), pp.
81
95
.
63.
Weerasooriya
,
T.
,
Sanborn
,
B.
,
Gunnarsson
,
C. A.
, and
Foster
,
M.
,
2016
, “
Orientation Dependent Compressive Response of Human Femoral Cortical Bone as a Function of Strain Rate
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
74
90
.
You do not currently have access to this content.