An investigation of the mechanical strain rate, inelastic behavior, and microstructural evolution under deformation for an as-cast pearlitic gray cast iron (GCI) is presented. A complex network of graphite, pearlite, steadite, and particle inclusions was stereologically quantified using standard techniques to identify the potential constituents that define the structure–property relationships, with the primary focus being strain rate sensitivity (SRS) of the stress–strain behavior. Volume fractions for pearlite, graphite, steadite, and particles were determined as 74%, 16%, 9%, and 1%, respectively. Secondary dendrite arm spacing (SDAS) was quantified as 22.50 μm ± 6.07 μm. Graphite flake lengths and widths were averaged as 199 μm ± 175 μm and 4.9 μm ± 2.3 μm, respectively. Particle inclusions comprised of manganese and sulfur with an average size of 13.5 μm ± 9.9 μm. The experimental data showed that as the strain rate increased from 10−3 to 103 s−1, the averaged strength increased 15–20%. As the stress state changed from torsion to tension to compression at a strain of 0.003 mm/mm, the stress asymmetry increased ∼470% and ∼670% for strain rates of 10−3 and 103 s−1, respectively. As the strain increased, the stress asymmetry differences increased further. Coalescence of cracks emanating from the graphite flake tips exacerbated the stress asymmetry differences. An internal state variable (ISV) plasticity-damage model that separately accounts for damage nucleation, growth, and coalescence was calibrated and used to give insight into the damage and work hardening relationship.

References

References
1.
Krause
,
D. E.
,
1969
, “
Gray Iron-A Unique Engineering Material, Gray, Ductile, and Malleable Iron Castings: Current Capabilities
,” ASTM International, Conshohocken, PA,
Standard No. ASTM STP 455
, pp.
3
28
.
2.
Sawyer
,
M. H.
,
1979
, “
World's First Iron Bridge
,”
Civ. Eng. ASCE
,
49
(
12
), pp.
46
49
.
3.
Stefanescu
,
D. M.
,
2005
, “
Solidification and Modeling of Cast Iron—A Short History of the Defining Moments
,”
Mater. Sci. Eng.
,
413–414
, pp.
322
333
.
4.
Jabbari Behnam
,
M. M.
,
Davami
,
P.
, and
Varahram
,
N.
,
2010
, “
Effect of Cooling Rate on Microstructure and Mechanical Properties of Gray Cast Iron
,”
Mater. Sci. Eng.
,
528
(
2
), pp.
583
588
.
5.
Abbasi
,
H. R.
,
Bazdar
,
M.
, and
Halvaee
,
A.
,
2007
, “
Effect of Phosphorus as an Alloying Element on Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron
,”
Mater. Sci. Eng.
,
444
(
1–2
), pp.
314
317
.
6.
Fourlakidis
,
V.
,
Diaconu
,
V. L.
, and
Diószegi
,
A.
,
2010
, “
Effects of Carbon Content on the Ultimate Tensile Strength in Gray Cast Iron
,”
Mater. Sci. Forum
,
649
, pp.
511
516
.
7.
Slyn'ko
,
G. I.
,
Grabovyi
,
V. M.
, and
Volchok
,
I. P.
,
1993
, “
Effect of Phosphide Eutectic on the Properties of a Cast Iron Alloy
,”
Metal Sci. Heat Treat.
,
35
(
3
), pp.
155
159
.
8.
Hsu
,
C.-H.
,
Lee
,
S.-C.
,
Wang
,
L.
, and
Dong
,
X.
,
2002
, “
The High Strain-Rate Fracture Behaviors of Gray Iron Under Compressive Loading
,”
Mater. Chem. Phys.
,
73
(
2–3
), pp.
174
178
.
9.
ASTM
,
2003
, “
Specification for Gray Iron Castings
,” ASTM International, Conshohocken, PA, Standard No. ASTM A48/A48M-03.
10.
Horstemeyer
,
M. F.
,
Lathrop
,
J.
,
Gokhale
,
A. M.
, and
Dighe
,
M.
,
2000
, “
Modeling Stress State Dependent Damage Evolution in a Cast Al–Si–Mg Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
,
33
(
1
), pp.
31
47
.
11.
Horstemeyer
,
M. F.
,
Gall
,
K.
,
Dolan
,
K. W.
,
Waters
,
A.
,
Haskins
,
J. J.
,
Perkins
,
D. E.
,
Gokhale
,
A. M.
, and
Dighe
,
M. D.
,
2003
, “
Numerical, Experimental, Nondestructive, and Image Analyses of Damage Progression in Cast A356 Aluminum Notch Tensile Bars
,”
Theor. Appl. Fract. Mech.
,
39
(
1
), pp.
23
45
.
12.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Solanki
,
K.
,
Bernard
,
J. D.
,
Berry
,
J. T.
, and
Williams
,
T. N.
,
2009
, “
Damage Characterization and Modeling of a 7075-T651 Aluminum Plate
,”
Mater. Sci. Eng.
,
527
(
1–2
), pp.
169
178
.
13.
Tucker
,
M. T.
,
Horstemeyer
,
M. F.
,
Whittington
,
W. R.
,
Solanki
,
K. N.
, and
Gullett
,
P. M.
,
2010
, “
The Effect of Varying Strain Rates and Stress States on the Plasticity, Damage, and Fracture of Aluminum Alloys
,”
Mech. Mater.
,
42
(
10
), pp.
895
907
.
14.
Allison
,
P. G.
,
Grewal
,
H.
,
Hammi
,
Y.
,
Brown
,
H. R.
,
Whittington
,
W. R.
, and
Horstemeyer
,
M. F.
,
2013
, “
Plasticity and Fracture Modeling/Experimental Study of a Porous Metal Under Various Strain Rates, Temperatures, and Stress States
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041008
.
15.
Whittington
,
W. R.
,
Oppedal
,
A. L.
,
Turnage
,
S.
,
Hammi
,
Y.
,
Rhee
,
H.
,
Allison
,
P. G.
,
Crane
,
C. K.
, and
Horstemeyer
,
M. F.
,
2014
, “
Capturing the Effect of Temperature, Strain Rate, and Stress State on the Plasticity and Fracture of Rolled Homogeneous Armor (RHA) Steel
,”
Mater. Sci. Eng.
,
594
(
31
), pp.
82
88
.
16.
Davis
,
J. R.
, and
ASM International Handbook Committee
,
1996
,
Cast Irons
,
ASM International
,
Materials Park, OH
.
17.
Walton
,
C. F.
, and
Society
,
G. I. F.
,
1957
,
The Gray Iron Castings Handbook: Including Data on Gray, Ductile (Nodular), White, and High Alloy Irons
,
Gray Iron Founders' Society
,
Cleveland, OH
.
18.
Angus
,
H. T.
,
1976
,
Cast Iron: Physical and Engineering Properties
,
Butterworths
,
London, UK
.
19.
Srivatsan
,
T.
, and
Sudarshan
,
T.
,
1999
, “
The Influence of Phosphorus on Shrinkage Porosity in Cast Irons
,”
Mater. Lett.
,
41
(
4
), pp.
186
191
.
20.
ASTM
,
2001
, “
Guide for Preparation of Metallographic Specimens
,” ASTM International, Conshohocken, PA, Standard No. ASTM E3-01.
21.
Vander Voort
,
G. F.
, and
ASM International Handbook Committee
,
2004
,
ASM Handbook
, (Metallography and Microstructures), Vol.
9
,
ASM International
,
Materials Park, OH
.
22.
ASTM
,
2003
, “
Test Methods for Rockwell Hardness of Metallic Materials
,” ASTM International, Conshohocken, PA, Standard No. ASTM E18-03.
23.
ASTM
,
2000
, “
Test Methods of Compression Testing of Metallic Materials at Room Temperature
,” ASTM International, Conshohocken, PA, Standard No. ASTM E9-89a.
24.
Lindholm
,
U. S.
,
Nagy
,
A.
,
Johnson
,
G. R.
, and
Hoegfeldt
,
J. M.
,
1980
, “
Large Strain, High Strain Rate Testing of Copper
,”
ASME J. Eng. Mater. Technol.
,
102
(
4
), p.
376
.
25.
Staab
,
G. H.
, and
Gilat
,
A.
,
1991
, “
A Direct-Tension Split Hopkinson Bar for High Strain-Rate Testing
,”
Exp. Mech.
,
31
(
3
), pp.
232
235
.
26.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
ASME Appl. Mech. Rev.
,
57
(
4
), p.
223
.
27.
Gilat
,
A.
, and
Cheng
,
C.-S.
,
2000
, “
Torsional Split Hopkinson Bar Tests at Strain Rates Above 104s−1
,”
Exp. Mech.
,
40
(
1
), pp.
54
59
.
28.
ASTM
,
2002
, “
Test Method for Determining Volume Fraction by Systematic Manual Point Count
,” ASTM International, Conshohocken, PA, Standard No. ASTM E562-02.
29.
ASTM
,
2004
, “
Test Methods for Determining Average Grain Size
,” ASTM International, Conshohocken, PA, Standard No. ASTM E112-96(R04).
30.
Horstemeyer
,
M. F.
,
Matalanis
,
M. M.
,
Sieber
,
A. M.
, and
Botos
,
M. L.
,
2000
, “
Micromechanical Finite Element Calculations of Temperature and Void Configuration Effects on Void Growth and Coalescence
,”
Int. J. Plast.
,
16
(
7–8
), pp.
979
1015
.
31.
Horstemeyer
,
M. F.
,
Cariño
,
R.
,
Hammi
,
Y.
, and
Solanki
,
K. N.
,
2009
, “
MSU Internal State Variable Plasticity-Damage Model 1.0 Calibration, DMGfit Production Version
,” Mississippi State University, Starkville, MS,
Report No. CAVS REPORT MSU.CAVS.CMD.2009-R001
.
32.
Bammann
,
D. J.
,
1984
, “
An Internal Variable Model of Viscoplasticity
,”
Int. J. Eng. Sci.
,
22
(
8–10
), pp.
1041
1053
.
33.
Bammann
,
D. J.
,
Chiesa
,
M. L.
,
Horstemeyer
,
M. F.
, and
Weingarten
,
L. I.
,
1993
, “
Failure in Ductile Materials Using Finite Element Methods
,”
Structural Crashworthiness and Failure
,
Taylor & Francis
,
Abingdon, UK
, pp.
1
54
.
34.
Garofalo
,
F.
,
1963
, “
An Empirical Relation Defining the Stress Dependence of Minimum Creep Rate in Metals
,”
Trans. Metall. Soc. AIME
,
227
(
2
), pp.
351
355
.
35.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1989
, “
A Damage Model for Ductile Metals
,”
Nucl. Eng. Des.
,
116
(
3
), pp.
355
362
.
36.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1981
, “
Creep Fracture by Void Growth
,”
Creep in Structures
,
A. R. S.
Ponter
and
D. R.
Hayhurst
, eds.,
Springer
,
Berlin
, pp.
368
387
.
37.
Chiou
,
W.
,
2003
, “
Structure and Stability of Fe3C-Cementite Surfaces From First Principles
,”
Surf. Sci.
,
530
(
1–2
), pp.
88
100
.
38.
Meyer
,
B.
,
1976
, “
The Structures of Elemental Sulfur
,”
Advances in Inorganic Chemistry
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
287
317
.
You do not currently have access to this content.