This research aims to describe the behavior of C45 steel and provide better understanding of the thermomechanical ductile failure that occurs due to accumulation of microcracks and voids along with plastic deformation to enable proper structural design, and hence provide better serviceability. A series of quasi-static tensile tests are conducted on C45 steel at a range of temperatures between 298 K and 923 K for strain rates up to 0.15 s−1. Drop hammer dynamic tests are also performed considering different masses and heights to study the material response at higher strain rates. Scanning electron microscopy (SEM) images are taken to quantify the density of microcracks and voids of each fractured specimens, which are needed to define the evolution of internal defects using an energy-based damage model. The coupling effect of damage and plasticity is incorporated to accurately define the constitutive relation that can simulate the different structural responses of this material. Good correlation was observed between the proposed model predictions and experiments particularly at regions where dynamic strain aging (DSA) is not present.

References

References
1.
Nemat-Nasser
,
S.
, and
Guo
,
W.
,
2005
, “
Thermomechanical Response of HSLA-65 Steel Plates: Experimental and Modeling
,”
Mech. Mater.
,
37
(
5
), pp.
379
405
.
2.
Celentano
,
D. J.
, and
Chaboche
,
J.-L.
,
2007
, “
Experimental and Numerical Characterization of Damage Evolution in Steels
,”
Int. J. Plast.
,
23
(
10–11
), pp.
1739
1762
.
3.
Nemat-Nasser
,
S.
, and
Guo
,
W.
,
2003
, “
Thermomechanical Response of DH-36 Structural Steel Over a Wide Range of Strain Rates and Temperatures
,”
Mech. Mater.
,
35
(
11
), pp.
1023
1047
.
4.
Guo
,
W.-G.
, and
Nemat-Nasser
,
S.
,
2006
, “
Flow Stress of Nitronic-50 Stainless Steel Over a Wide Range of Strain Rates and Temperatures
,”
Mech. Mater.
,
38
(
11
), pp.
1090
1103
.
5.
Nemat-Nasser
,
S.
,
Guo
,
W.-G.
, and
Kihl
,
D. P.
,
2001
, “
Thermomechanical Response of AL-6XN Stainless Steel Over a Wide Range of Strain Rates and Temperatures
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1823
1846
.
6.
Su
,
J.
,
Guo
,
W.
,
Meng
,
W.
, and
Wang
,
J.
,
2013
, “
Plastic Behavior and Constitutive Relations of DH-36 Steel Over a Wide Spectrum of Strain Rates and Temperatures Under Tension
,”
Mech. Mater.
,
65
, pp.
76
87
.
7.
Vaynman
,
S.
,
Fine
,
M. E.
,
Lee
,
S.
, and
Espinosa
,
H. D.
,
2006
, “
Effect of Strain Rate and Temperature on Mechanical Properties and Fracture Mode of High Strength Precipitation Hardened Ferritic Steels
,”
Scr. Mater.
,
55
(
4
), pp.
351
354
.
8.
Rohr
,
I.
,
Nahme
,
H.
, and
Thoma
,
K.
,
2005
, “
Material Characterization and Constitutive Modelling of Ductile High Strength Steel for a Wide Range of Strain Rates
,”
Int. J. Impact Eng.
,
31
(
4
), pp.
401
433
.
9.
Abed
,
F. H.
,
Al-Tamimi
,
A. K.
, and
Al-Himairee
,
R. M.
,
2012
, “
Characterization and Modeling of Ductile Damage in Structural Steel at Low and Intermediate Strain Rates
,”
J. Eng. Mech.
,
138
(
9
), pp.
1186
1194
.
10.
Darras
,
B.
,
Abed
,
F.
,
Pervaiz
,
S.
, and
Abdu-Latif
,
A.
,
2013
, “
Analysis of Damage in 5083 Aluminum Alloy Deformed at Different Strain rates
,”
Mater. Sci. Eng.: A
,
568
, pp.
143
149
.
11.
Chae
,
D.
, and
Koss
,
D. A.
,
2004
, “
Damage Accumulation and Failure of HSLA-100 Steel
,”
Mater. Sci. Eng.: A
,
366
(
2
), pp.
299
309
.
12.
Al-Himairee
,
R. M.
,
Abed
,
F. H.
, and
Al-Tamimi
,
A. K.
,
2011
, “
Damage Evolution in Structural Steel at Different Loading Conditions
,”
Key Eng. Mater.
,
471–472
, pp.
969
974
.
13.
Abed
,
F.
, and
Makarem
,
F.
,
2012
, “
Comparisons of Constitutive Models for Steel Over a Wide Range of Temperatures and Strain Rates
,”
ASME J. Eng. Mater. Technol.
,
134
(
2
), p.
021001
.
14.
Goto
,
D.
,
Garrett
,
R.
,
Bingert
,
J.
,
Chen
,
S.
, and
Gray
,
G.
,
2000
, “
The Mechanical Threshold Stress Constitutive-Strength Model Description of HY-100 Steel
,”
Metall. Mater. Trans. A
,
31
(
8
), pp.
1985
1996
.
15.
Abed
,
F.
,
Ranganathan
,
S.
, and
Serry
,
M.
,
2014
, “
Constitutive Modeling of Nitrogen-Alloyed Austenitic Stainless Steel at Low and High Strain Rates and Temperatures
,”
Mech. Mater.
,
77
, pp.
142
157
.
16.
Abed
,
F. H.
,
2010
, “
Constitutive Modeling of the Mechanical Behavior of High Strength Ferritic Steel for Static and Dynamic Applications
,”
Mech. Time-Depend. Mater. J.
,
14
(
4
), pp.
329
345
.
17.
Banerjee
,
B.
,
2007
, “
The Mechanical Threshold Stress Model for Various Tempers of AISI 4340 Steel
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
834
859
.
18.
Lee
,
Y.
,
Kim
,
B. M.
,
Park
,
K. J.
,
Seo
,
S. W.
, and
Min
,
O.
,
2002
, “
A Study for the Constitutive Equation of Carbon Steel Subjected to Large Strains, High Temperatures and High Strain Rates
,”
J. Mater. Process. Technol.
,
130–131
, pp.
181
188
.
19.
Abed
,
F.
,
Makarem
,
F.
, and
Voyiadjis
,
G.
,
2013
, “
Dynamic Localizations in HSLA-65 and DH-36 Structural Steel at Elevated Temperatures
,”
J. Eng. Mater. Technol.
,
135
(
2
), p.
021007
.
20.
Makarem
,
F.
, and
Abed
,
F.
,
2013
, “
Nonlinear Finite Element Modeling of Dynamic Localizations in High Strength Steel Columns Under Impact
,”
Int. J. Impact Eng.
,
52
, pp.
47
61
.
21.
Abed
,
F.
,
2010
, “
On the Differences of Dynamic Localizations Between Different Types of Metals
,”
IJMSI
,
4
(
234
), p.
215
.
22.
Voyiadjis
,
G.
, and
Abed
,
F.
,
2006
, “
Transient Localizations in Metals Using Microstructure-Based Yield Surfaces
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S83
S95
.
23.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
2009
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High
,”
7th International Symposium on Ballistics
, pp.
541
547
.
24.
Chen
,
H.
,
Tang
,
J.
, and
Zhou
,
W.
,
2013
, “
An Experimental Study of the Effects of Ultrasonic Vibration on Grinding Surface Roughness of C45 Carbon Steel
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2095
2098
.
25.
Kulawik
,
A.
, and
Winczek
,
J.
,
2011
, “
Influence of Heating Rate on Sorbitic Transformation Temperature of Tempering C45 Steel
,”
Arch. Foundry Eng.
,
11
(
Special Issue 2
), pp.
131
134
.
26.
Kermouche
,
G.
, and
Langlade
,
C.
,
2014
, “
Mechanical Nano-Structuration of a C45 Steel Under Repeated Normal Impacts
,”
IOP
Conference Series: Materials Science and Engineering
, Vol.
63
, p.
012019
.
27.
Król
,
S.
,
Ptacek
,
L.
,
Zalisz
,
Z.
, and
Hepner
,
M.
,
2004
, “
Friction and Wear Properties of Titanium and Oxidised Titanium in Dry Sliding Against Hardened C45 Steel
,”
J. Mater. Process. Technol.
,
157–158
, pp.
364
369
.
28.
Leppert
,
T.
,
2011
, “
Effect of Cooling and Lubrication Conditions on Surface Topography and Turning Process of C45 Steel
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
120
126
.
29.
Magnabosco
,
I.
,
Ferro
,
P.
,
Tiziani
,
A.
, and
Bonollo
,
F.
,
2006
, “
Induction Heat Treatment of a ISO C45 Steel Bar: Experimental and Numerical Analysis
,”
Comput. Mater. Sci.
,
35
(
2
), pp.
98
106
.
30.
Michalik
,
P.
,
Zajac
,
J.
,
Hatala
,
M.
,
Mital
,
D.
, and
Fecova
,
V.
,
2014
, “
Monitoring Surface Roughness of Thin-Walled Components From Steel C45 Machining Down and Up Milling
,”
Measurement
,
58
, pp.
416
428
.
31.
Rajanna
,
K.
,
Pathiraj
,
B.
, and
Kolster
,
B. H.
,
1996
, “
Some Studies on the Influence of Stress Ratio and Test Temperature on X-Ray Fractography Observations in C45 Steel Specimens
,”
Eng. Fract. Mech.
,
54
(
4
), pp.
457
470
.
32.
SreeramaReddy
,
T. V.
,
Sornakumar
,
T.
,
VenkatramaReddy
,
M.
, and
Venkatram
,
R.
,
2009
, “
Machinability of C45 Steel With Deep Cryogenic Treated Tungsten Carbide Cutting Tool Inserts
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
1
), pp.
181
185
.
33.
Szkodo
,
M.
,
2005
, “
Relationship Between Microstructure of Laser Alloyed C45 Steel and Its Cavitation Resistance
,”
J. Mater. Process. Technol.
,
162–163
, pp.
410
415
.
34.
Yan
,
P. X.
,
Wei
,
Z. Q.
,
Wen
,
X. L.
,
Wu
,
Z. G.
,
Xu
,
J. W.
,
Liu
,
W. M.
, and
Tian
,
J.
,
2002
, “
Post Boronizing Ion Implantation of C45 Steel
,”
Appl. Surf. Sci.
,
195
(
1–4
), pp.
74
79
.
35.
Wang
,
T.
,
Jonas
,
J.
,
Qin
,
H.
, and
Yue
,
S.
,
2015
, “
Effect of Dynamic Strain Aging on the Deformation and Twinning Behavior of a Mg–2Zn–2Nd Alloy
,”
Mater. Sci. Eng.: A
,
645
, pp.
126
135
.
36.
Calladine
,
C. R.
, and
English
,
R. W.
,
1984
, “
Strain-Rate and Inertia Effect in the Collapse of the Two Types of Energy-Absorbing Structure
,”
Int. J. Mech. Sci.
,
26
(
11–12
), pp.
689
701
.
37.
Saffarini
,
M.
,
2016
, “
Thermo-Mechanical Behavior of C45 Steel Over a Range of Temperatures and Loading Rates
,”
Master thesis
, American University of Sharjah, Sharjah, United Arab Emirates.
You do not currently have access to this content.