The steel plate reinforced concrete (SC) walls and roofs are effective protective structures in nuclear power plants against aircraft attacks. The mechanical behavior of the concrete in SC panels is very complicated when SC panels are under the action of impacting loading. This paper presents a dynamic material model for concrete subjected to high-velocity impact, in which pressure hardening, strain rate effect, plastic damage, and tensile failure are taken into account. The loading surface of the concrete undergoing plastic deformation is defined based on the extended Drucker–Prager strength criterion and the Johnson–Cook material model. The associated plastic flow rule is utilized to evaluate plastic strains. Two damage parameters are introduced to characterize, respectively, the plastic damage and tensile failure of concrete. The proposed concrete model is implemented into the transient nonlinear dynamic analysis code ls-dyna. The reliability and accuracy of the present concrete material model are verified by the numerical simulations of standard compression and tension tests with different confining pressures and strain rates. The numerical simulation of the impact test of a 1/7.5-scale model of an aircraft penetrating into a half steel plate reinforced concrete (HSC) panel is carried out by using ls-dyna with the present concrete model. The resulting damage pattern of concrete slab and the predicted deformation of steel plate in the HSC panel are in good agreement with the experimental results. The numerical results illustrate that the proposed concrete model is capable of properly charactering the tensile damage and failure of concrete.

References

References
1.
Takeuchi
,
M.
,
Narikawa
,
M.
,
Matsuo
,
I.
,
Hara
,
K.
, and
Usami
,
S.
,
1998
, “
Study on a Concrete Filled Structure for Nuclear Power Plants
,”
Nucl. Eng. Des.
,
179
(
2
), pp.
209
223
.
2.
Sugano
,
T.
,
Tsubota
,
H.
,
Kasai
,
Y.
,
Koshika
,
N.
,
Orui
,
S.
,
von Riesemann
,
W. A.
,
Bickel
,
D. C.
, and
Parks
,
M. B.
,
1993
, “
Full-Scale Aircraft Impact Test for Evaluation of Impact Force
,”
Nucl. Eng. Des.
,
140
(
3
), pp.
373
385
.
3.
Mizuno
,
J.
,
Kasai
,
Y.
,
Koshika
,
N.
,
Kusama
,
K.
,
Fujita
,
T.
, and
Imamura
,
A.
,
1999
, “
Analytical Evaluation of Multiple Barriers Against Full-Scale Aircraft Impact
,”
15th International Conference on Structural Mechanics in Reactor Technology
(
SMiRT-15
), Seoul, South Korea, Aug. 15–20, Vol.
J04/4
, pp.
153
160
.
4.
Mizuno
,
J.
,
Sawamoto
,
Y.
,
Yamashita
,
S.
,
Koshika
,
N.
,
Niwa
,
N.
, and
Suzuki
,
A.
,
2005
, “
Investigation on Impact Resistance of Steel Plate Reinforced Concrete Barriers Against Aircraft Impact. Part 1: Test Program and Results
,”
18th International Conference on Structural Mechanics in Reactor Technology
(
SMiRT-18
), Beijing, China, Aug. 7–12, pp.
2566
2579
.
5.
Mizuno
,
J.
,
Morikawa
,
H.
,
Koshika
,
N.
,
Wakimoto
,
K.
, and
Fukuda
,
R.
,
2005
, “
Investigation on Impact Resistance of Steel Plate Reinforced Concrete Barriers Against Aircraft Impact. Part 2: Simulation Analyses of Scale Model Impact Tests
,”
18th International Conference on Structural Mechanics in Reactor Technology
(
SMiRT-18
), Beijing, China, Aug. 7–12, pp.
2580
2590
.
6.
Muhammad
,
S.
,
Zhu
,
X.
, and
Pan
,
R.
,
2014
, “
Simulation Analysis of Impact Tests of Steel Plate Reinforced Concrete and Reinforced Concrete Slabs Against Aircraft Impact and Its Validation With Experimental Results
,”
Nucl. Eng. Des.
,
273
(
1
), pp.
653
667
.
7.
Yun
,
S.-H.
, and
Park
,
T.
,
2013
, “
Multi-Physics Blast Analysis for Steel-Plated and GFRPP-Plated Concrete Panels
,”
Adv. Struct. Eng.
,
16
(
3
), pp.
529
548
.
8.
Yun
,
S.-H.
,
Jeon
,
H.-K.
, and
Park
,
T.
,
2013
, “
Parallel Blast Simulation of Nonlinear Dynamics for Concrete Retrofitted With Steel Plate Using Multi-Solver Coupling
,”
Int. J. Impact Eng.
,
60
, pp.
10
23
.
9.
Johnson
,
G. J.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, Hague, The Netherlands, pp.
541
547
.
10.
Fu
,
H. C.
,
Erki
,
M. A.
, and
Seckin
,
M.
,
1991
, “
Review of Effects of Loading Rate on Concrete in Compression
,”
ASCE J. Struct. Eng.
,
117
(
12
), pp.
3645
3659
.
11.
Tu
,
Z.
, and
Lu
,
Y.
,
2009
, “
Evaluation of Typical Concrete Material Models Used in Hydrocodes for High Dynamic Response Simulations
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
132
146
.
12.
Holmquist
,
T. J.
,
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1993
, “
A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates, and High Pressure
,”
14th International Symposium on Ballistics
, Quebec City, Canada, Sept. 26–29, pp.
591
600
.
13.
Murray
,
Y. D.
,
Abu-Odeh
,
A.
, and
Bligh
,
R.
,
2007
, “
User's Manual for LS-DYNA Concrete Material Model 159
,”
APTEK, Inc.
, Colorago Springs, CO, pp.
53
78
.
14.
Malvar
,
L. J.
,
Crawford
,
J. E.
,
Wesevich
,
J. W.
, and
Simons
,
D.
,
1997
, “
A Plasticity Concrete Material Model for DYNA3D
,”
Int. J. Impact Eng.
,
19
(
9–10
), pp.
847
873
.
15.
Borrvall
,
T.
, and
Riedel
,
W.
,
2011
, “
The RHT Concrete Model in LS-DYNA
,”
8th European LS-DYNA User's Conference
, Strasbourg, France, pp.
1
14
.
16.
Fafitis
,
A.
, and
Won
,
Y. H.
,
1989
, “
Stochastic Nonlinear Constitutive Law for Concrete
,”
ASME J. Eng. Mater. Technol.
,
111
(
4
), pp.
443
449
.
17.
Simo
,
J. C.
, and
Ju
,
J. W.
,
1987
, “
Strain and Stress-Based Continuum Damage Model. Part I: Formulation
,”
Int. J. Solids Struct.
,
23
(
7
), pp.
821
840
.
18.
Yazdani
,
S.
, and
Schreyer
,
H. L.
,
1990
, “
Combined Plasticity and Damage Mechanics Model for Plain Concrete
,”
ASCE J. Eng. Mech.
,
116
(
7
), pp.
1435
1450
.
19.
Voyiadjis
,
G. Z.
,
Taqieddin
,
Z. N.
, and
Kattan
,
P. I.
,
2009
, “
Theoretical Formulation of a Coupled Elastic-Plastic Anisotropic Damage Model for Concrete Using the Strain Energy Equivalence Concept
,”
Int. J. Damage Mech.
,
18
(
7
), pp.
603
638
.
20.
Mazars
,
J.
, and
Pijaudier-Cabot
,
G.
,
1989
, “
Continuum Damage Theory-Application to Concrete
,”
ASCE J. Eng. Mech.
,
115
(
2
), pp.
345
365
.
21.
Lubliner
,
J.
,
Oliver
,
J.
,
Oller
,
S.
, and
Oñate
,
E.
,
1989
, “
A Plastic-Damage Model for Concrete
,”
Int. J. Solids Struct.
,
25
(
3
), pp.
299
326
.
22.
Shi
,
G.
, and
Voyiadjis
,
G. Z.
,
1997
, “
A New Free Energy for Plastic Damage Analysis
,”
Mech. Res. Commun.
,
24
(
4
), pp.
377
387
.
23.
Salari
,
M. R.
,
Saeb
,
S.
,
Willam
,
K. J.
,
Patchet
,
S. J.
, and
Carrasco
,
R. C.
,
2004
, “
A Coupled Elastoplastic Damage Model for Geomaterials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
27–29
), pp.
2625
2643
.
24.
Wu
,
J. Y.
,
Li
,
J.
, and
Faria
,
R.
,
2006
, “
An Energy Release Rate-Based Plastic-Damage Model for Concrete
,”
Int. J. Solids Struct.
,
43
(
3–4
), pp.
583
612
.
25.
Grassl
,
P.
, and
Jirásek
,
M.
,
2006
, “
Damage-Plastic Model for Concrete Failure
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7166
7196
.
26.
Jason
,
L.
,
Huerta
,
A.
,
Pijaudier-Cabot
,
G.
, and
Ghavamian
,
S.
,
2006
, “
An Elastic Plastic Damage Formulation for Concrete: Application to Elementary and Structural Tests
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
52
), pp.
7077
7092
.
27.
Zheng
,
F. G.
,
Wu
,
Z. R.
,
Gu
,
C. S.
,
Bao
,
T. F.
, and
Hu
,
J.
,
2012
, “
A Plastic Damage Model for Concrete Structure Cracks With Two Damage Variables
,”
Sci. China Technol. Sci.
,
55
(
11
), pp.
2971
2980
.
28.
Sfer
,
D.
,
Carol
,
I.
,
Gettu
,
R.
, and
Etse
,
G.
,
2002
, “
Study of the Triaxial Behaviour of Concrete
,”
ASCE J. Eng. Mech.
,
128
(
2
), pp.
156
163
.
29.
Gabet
,
T.
,
Malecot
,
Y.
, and
Daudeville
,
L.
,
2008
, “
Triaxial Behaviour of Concrete Under High Stresses: Influence of the Loading Path on Compaction and Limit States
,”
Cem. Concr. Res.
,
38
(
3
), pp.
403
412
.
30.
Vu
,
X. H.
,
Malecot
,
Y.
,
Daudeville
,
L.
, and
Buzaud
,
E.
,
2009
, “
Experimental Analysis of Concrete Behavior Under High Confinement: Effect of the Saturation Ratio
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1105
1120
.
31.
Aráoz
,
G.
, and
Luccioni
,
B.
,
2015
, “
Modeling Concrete Like Materials Under Sever Dynamic Pressures
,”
Int. J. Impact Eng.
,
76
, pp.
139
154
.
32.
Bischoff
,
P. H.
, and
Perry
,
S. H.
,
1991
, “
Compressive Behaviour of Concrete at High Strain Rates
,”
Mater. Struct.
,
24
(
6
), pp.
425
450
.
33.
Poinard
,
C.
,
Malecot
,
Y.
, and
Daudeville
,
L.
,
2010
, “
Damage of Concrete in a Very High Stress State: Experimental Investigation
,”
Mater. Struct.
,
43
(
1–2
), pp.
15
29
.
34.
Grote
,
D. L.
,
Park
,
S. W.
, and
Zhou
,
M.
,
2001
, “
Dynamic Behavior of Concrete at High Strain Rates and Pressures: I. Experimental Characterization
,”
Int. J. Impact Eng.
,
25
(
9
), pp.
869
886
.
35.
Yan
,
D.
, and
Lin
,
G.
,
2006
, “
Dynamic Properties of Concrete in Direct Tension
,”
Cem. Concr. Res.
,
36
(
7
), pp.
1371
1378
.
36.
Cotsovos
,
D. M.
, and
Pavlovic
,
M. N.
,
2008
, “
Numerical Investigation of Concrete Subjected to Compressive Impact Loading. Part 1: A Fundamental Explanation for the Apparent Strength Gain at High Loading Rates
,”
Comput. Struct.
,
86
(
1–2
), pp.
145
163
.
37.
Cotsovos
,
D. M.
, and
Pavlovic
,
M. N.
,
2008
, “
Numerical Investigation of Concrete Subjected to Compressive Impact Loading. Part 2: Parametric Investigation of Factors Affecting Behaviour at High Loading Rates
,”
Comput. Struct.
,
86
(
1–2
), pp.
164
180
.
38.
Cotsovos
,
D. M.
, and
Pavlovic
,
M. N.
,
2008
, “
Numerical Investigation of Concrete Subjected to High Rates of Uniaxial Tensile Loading
,”
Int. J. Impact Eng.
,
35
(
5
), pp.
319
335
.
39.
Shkolnik
, I
. E.
,
2008
, “
Influence of High Strain Rates on Stress–Strain Relationship, Strength and Elastic Modulus of Concrete
,”
Cem. Concr. Res.
,
30
(
10
), pp.
1000
1012
.
40.
Zhang
,
M.
,
Wu
,
H. J.
,
Li
,
Q. M.
, and
Huang
,
F. L.
,
2009
, “
Further Investigation on the Dynamic Compressive Strength Enhancement of Concrete-Like Materials Based on Split Hopkinson Pressure Bar Tests. Part I: Experiments
,”
Int. J. Impact Eng.
,
36
(
12
), pp.
1327
1334
.
41.
Schwer
,
L.
,
2009
, “
Strain Rate Induced Strength Enhancement in Concrete: Much Ado About Nothing?
,” 7th European
LS-DYNA
User's Conference
, Salzburg, Austria, May 14–15, pp.
1
17
.
42.
Hao
,
Y.
,
Hao
,
H.
, and
Zhang
,
X. H.
,
2012
, “
Numerical Analysis of Concrete Material Properties at High Strain Rate Under Direct Tension
,”
Int. J. Impact Eng.
,
39
(
1
), pp.
51
62
.
43.
Lu
,
G.
,
Li
,
X.
, and
Wang
,
K.
,
2012
, “
A Numerical Study on the Damage of Projectile Impact on Concrete Targets
,”
Comput. Concr.
,
9
(
1
), pp.
21
33
.
44.
Gebbeken
,
N.
, and
Ruppert
,
M.
,
2000
, “
A New Material Model for Concrete in High-Dynamic Hydrocode Simulations
,”
Arch. Appl. Mech.
,
70
(
7
), pp.
463
478
.
45.
Shi
,
G.
, and
Sun
,
M.
,
2005
, “
On Computational Material Modeling of Concrete Subjected to High Strain Rate, High Pressure and Failure
,”
Adv. Comput. Sci.
,
2
, pp.
2833
2838
.
46.
Xiong
,
Y.
,
Hu
,
Y.
,
Xu
,
J.
, and
Chen
,
J.
,
2010
, “
Determining Failure Surface Parameters of the Johnson–Holmquist Concrete Constitutive Model
,”
Acta Armamentarii
,
31
(
6
), pp.
746
751
(in Chinese).
47.
Hartmann
,
T.
,
Pietzsch
,
A.
, and
Gebbeken
,
N.
,
2010
, “
A Hydrocode Material Model for Concrete
,”
Int. J. Prot. Struct.
,
1
(
4
), pp.
443
468
.
48.
LSTC
,
2003
, “
LS-DYNA Keyword User's Manual
,” Version 970,
Livermore Software Technology Corporation
, Livermore, CA.
49.
Yuan
,
X.
,
Liu
,
H.
, and
Wang
,
Z.
,
2012
, “
Study of Elastoplastic Damage Constitutive Model of Rock Based on Drucker–Prager Criterion
,”
Rock Soil Mech.
,
33
(
4
), pp.
1103
1108
(in Chinese).
50.
Karsan
,
I. D.
, and
Jirsa
,
J. O.
,
1969
, “
Behavior of Concrete Under Compressive Loadings
,”
ASCE J. Struct. Div.
,
95
(
12
), pp.
2535
2563
.
51.
Gopalaratnam
,
V. S.
, and
Shah
,
S. P.
,
1985
, “
Softening Response of Plain Concrete in Direct Tension
,”
ACI J. Proc.
,
82
(
3
), pp.
310
323
.
52.
Guo
,
Z.
, and
Wang
,
C.
,
1991
, “
Investigation of Strength and Failure of Concrete Under Multi-Axial Stresses
,”
J. China Civil Eng.
,
24
(
3
), pp.
l
14
(in Chinese).
53.
Park
,
S. W.
,
Xia
,
Q.
, and
Zhou
,
M.
,
2001
, “
Dynamic Behavior of Concrete at High Strain Rates and Pressures: II Numerical Simulation
,”
Int. J. Impact Eng.
,
25
(
9
), pp.
887
910
.
54.
Kupfer
,
H.
,
Hilsdorf
,
H. K.
, and
Rusch
,
H.
,
1969
, “
Behavior of Concrete Under Biaxial Stresses
,”
ACI J. Proc.
,
66
(
8
), pp.
656
666
.
55.
Hanchak
,
S. J.
,
Forrestal
,
M. J.
,
Young
,
E. R.
, and
Ehrgott
,
J. Q.
,
1992
, “
Perforation of Concrete Slabs With 48 MPa (7 ksi) and 140 MPa (20 ksi) Unconfined Compressive Strengths
,”
Int. J. Impact Eng.
,
12
(
1
), pp.
1
7
.
56.
Li
,
H.
, and
Shi
,
G.
,
2016
, “
A Dynamic Material Model for Rock Materials Under Condition of High Confining Pressure and High Strain Rate
,”
Int. J. Impact Eng.
,
89
(
1
), pp.
38
48
.
You do not currently have access to this content.