This paper presents the energy absorption of target materials with combinations of polyurethane (PU) foam, PU sheet, SiC inserts, and SiC plate bonded to glass fiber reinforced composite laminate backing during impact loading. SiC inserts and SiC plates are bonded as front layer to enhance energy absorption and to protect composite laminate. The composite laminates are prepared by hand lay-up process and other layers are bonded by using epoxy. Low-velocity impact is conducted by using drop mass setup, and mild steel spherical nosed impactor is used for impact testing of target in fixed boundary conditions. Energy absorption and damage are compared to the target plates when subjected to impact at different energy levels. The energy absorbed in various failure modes is analyzed for various layers of target. Failure in the case of SiC inserts is local, and the insert under the impact point is damaged. However, in the other cases, the SiC plate is damaged along with fiber failure and delamination on the composite backing laminate. It is observed that the energy absorbed by SiC plate layered target is higher than SiC inserts layered target.

References

References
1.
Zinoviev
,
P. A.
, and
Ermakov
,
Y. N.
,
1994
,
Energy Dissipation in Composite Materials
,
Technomic Publishing Company
, Basel, Switzerland.
2.
Morye
,
S. S.
,
Hine
,
P. J.
,
Duckett
,
R. A.
,
Carr
,
D. J.
, and
Ward
,
I. M.
,
2000
, “
Modeling of the Energy Absorption by Polymer Composites Upon Ballistic Impact
,”
Compos. Sci. Technol.
,
60
(
14
), pp.
2631
2642
.
3.
Abrate
,
S.
,
1997
, “
Localized Impact on Sandwich Structures With Laminated Facings
,”
ASME Appl. Mech. Rev.
,
50
(
2
), pp.
70
82
.
4.
Wen
,
H. M.
,
2001
, “
Penetration and Perforation of Thick FRP Laminates
,”
Compos. Sci. Technol.
,
61
(
8
), pp.
1163
1172
.
5.
Balaganesan
,
G.
,
Velmurugan
,
R.
,
Srinivasan
,
M.
,
Gupta
,
N. K.
, and
Kanny
,
K.
,
2014
, “
Energy Absorption and Ballistic Limit of Nanocomposite Laminates Subjected to Impact Loading
,”
Int. J. Impact Eng.
,
74
, pp.
57
66
.
6.
Shim
,
V. P. W.
,
Tu
,
Z. H.
, and
Lim
,
C. T.
,
2000
, “
Two-Dimensional Response of Crushable Polyurethane Foam to Low Velocity Impact
,”
Int. J. Impact Eng.
,
24
(
6–7
), pp.
703
731
.
7.
Wang
,
J.
,
Waas
,
A. M.
, and
Wang
,
H.
,
2013
, “
Experimental and Numerical Study on the Low-Velocity Impact Behavior of Foam-Core Sandwich Panels
,”
Compos. Struct.
,
96
, pp.
298
311
.
8.
Bhuiyan
,
A.
,
Hosur
,
M. V.
, and
Jeelani
,
S.
,
2009
, “
Low-Velocity Impact Response of Sandwich Composites With Nanophased Foam Core and Biaxial ±45 Braided Face Sheets
,”
Composites, Part B
,
40
(
6
), pp.
561
571
.
9.
Zaretsky
,
E.
,
Asaf
,
Z.
,
Ran
,
E.
, and
Aizik
,
F.
,
2012
, “
Impact Response of High Density Flexible Polyurethane Foam
,”
Int. J. Impact Eng.
,
39
(
1
), pp.
1
7
.
10.
Nasirzadeh
,
R.
, and
Sabet
,
A. R.
,
2014
, “
Study of Foam Density Variations in Composite Sandwich Panels Under High Velocity Impact Loading
,”
Int. J. Impact Eng.
,
63
, pp.
129
139
.
11.
Karandikar
,
P. G.
,
2009
, “
A Review of Ceramics for Armor Applications
,”
Advances in Ceramic Armor IV
, Vol.
29
,
The American Ceramic Society
, Westerville, OH, pp.
163
175
.
12.
Bhatnagar
,
A.
,
2006
,
Lightweight Ballistic Composites: Military and Law-Enforcement Applications
,
Woodhead Publishing
, Cambridge, UK.
13.
Krell
,
A.
, and
Strassburger
,
E.
,
2008
, “
Hierarchy of Key Influences on the Ballistic Strength of Opaque and Transparent Armor
,”
Ceram. Eng. Sci. Proc.
,
28
(
5
), pp.
45
55
.
14.
Evci
,
C.
, and
Gülgeç
,
M.
,
2013
, “
Effective Damage Mechanisms and Performance Evaluation of Ceramic Composite Armors Subjected to Impact Loading
,”
J. Compos. Mater.
,
48
(
26
), pp.
3215
3236
.
15.
Krishnan
,
K.
,
Sockalingam
,
S.
,
Bansal
,
S.
, and
Rajan
,
S. D.
,
2010
, “
Numerical Simulation of Ceramic Composite Armor Subjected to Ballistic Impact
,”
Composites, Part B
,
41
(
8
), pp.
583
593
.
16.
Signetti
,
S.
, and
Pugno
,
N. M.
,
2014
, “
Evidence of Optimal Interfaces in Bio-Inspired Ceramic Composite Panels for Superior Ballistic Protection
,”
J. Eur. Ceram. Soc.
,
34
(
11
), pp.
2823
2831
.
17.
Benloulo
,
I. S. C.
, and
Sanchez-Galvez
,
V.
,
1998
, “
A New Analytical Model to Simulate Impact Onto Ceramic/Composite Armors
,”
Int. J. Impact Eng.
,
21
(
6
), pp.
461
471
.
18.
Naik
,
N. K.
,
Kumar
,
S.
,
Ratnaveer
,
D.
,
Joshi
,
M.
, and
Akella
,
K.
,
2012
, “
An Energy-Based Model for Ballistic Impact Analysis of Ceramic-Composite Armors
,”
Int. J. Damage Mech.
,
22
(
2
), pp.
1
43
.
19.
Lee
,
M.
, and
Yoo
,
Y. H.
,
2001
, “
Analysis of Ceramic/Metal Armour Systems
,”
Int. J. Impact Eng.
,
25
(
9
), pp.
819
829
.
20.
Liu
,
W.
,
Chen
,
Z.
,
Chen
,
Z.
,
Cheng
,
X.
,
Wang
,
Y.
,
Chen
,
X.
,
Liu
,
J.
,
Li
,
B.
, and
Wang
,
S.
,
2015
, “
Influence of Different Back Laminate Layers on Ballistic Performance of Ceramic Composite Armor
,”
Mater. Des.
,
87
, pp.
421
427
.
21.
Qiao
,
P.
,
Yang
,
M.
, and
Bobaru
,
F.
,
2008
, “
Impact Mechanics and High-Energy Absorbing Materials: Review
,”
J. Aerosp. Eng.
,
21
(
4
), pp.
235
248
.
22.
Mamalis
,
A. G.
,
Robinson
,
M.
,
Manolakos
,
D. E.
,
Demosthenous
,
G. A.
,
Ioannidis
,
M. B.
, and
Carruthers
,
J.
,
1997
, “
Crashworthy Capability of Composite Material Structures
,”
Compos. Struct.
,
37
(
2
), pp.
109
134
.
23.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Demosthenous
,
G. A.
, and
Ioannidis
,
M. B.
,
1998
,
Crashworthiness of Composite Thin-Walled Structural Components
,
Technomic Publishing
,
Lancaster, PA
.
24.
Lundberg
,
P.
,
Renstro
,
R.
, and
Lundberg
,
B.
,
2000
, “
Impact of Metallic Projectiles on Ceramic Targets: Transition Between Interface Defeat and Penetration
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
259
275
.
25.
Wang
,
J.
,
Waas
,
A. M.
, and
Wang
,
H.
,
2013
, “
Experimental and Numerical Study on the Low-Velocity Impact Behavior of Foam-Core Sandwich Panels
,”
Compos. Struct.
,
96
, pp.
298
311
.
26.
Zhang
,
G.
,
Wang
,
B.
,
Ma
,
L.
,
Wu
,
L.
,
Pan
,
S.
, and
Yang
,
J.
,
2014
, “
Energy Absorption and Low Velocity Impact Response of Polyurethane Foam Filled Pyramidal Lattice Core Sandwich Panels
,”
Compos. Struct.
,
108
, pp.
304
310
.
27.
Garcia-Avila
,
M.
,
Portanova
,
M.
, and
Rabiei
,
A.
,
2014
, “
Ballistic Performance of a Composite Metal Foam-Ceramic Armor System
,”
Procedia Mater. Sci.
,
4
, pp.
151
156
.
28.
Hosur
,
M. V.
,
Abdullah
,
M.
, and
Jeelani
,
S.
,
2005
, “
Manufacturing and Low-Velocity Impact Characterization of Foam Filled 3-D Integrated Core Sandwich Composites With Hybrid Face Sheets
,”
Compos. Struct.
,
69
(
2
), pp.
167
181
.
29.
Nemes
,
J. A.
, and
Simmonds
,
K. E.
,
1992
, “
Low-Velocity Impact Response of Foam-Core Sandwich Composites
,”
J. Compos. Mater.
,
26
(
4
), pp.
500
519
.
30.
Gailly
,
B. A.
, and
Espinosa
,
H. D.
,
2002
, “
Modeling of Failure Mode Transition in Ballistic Penetration With a Continuum Model Describing Micro Cracking and Flow of Pulverized Media
,”
Int. J. Numer. Methods Eng.
,
54
(
3
), pp.
365
398
.
31.
Hosseini
,
M.
, and
Khalili
,
S. M. R.
,
2013
, “
Analytical Prediction of Indentation and Low-Velocity Impact Responses of Fully Backed Composite Sandwich Plates
,”
J. Solid Mech.
,
5
(
3
), pp.
278
289
.
You do not currently have access to this content.