In this paper, the authors present an internal state variable (ISV) cap plasticity model to provide a physical representation of inelastic mechanical behaviors of granular materials under pressure and shear conditions. The formulation is dependent on several factors: nonlinear elasticity, yield limit, stress invariants, plastic flow, and ISV hardening laws to represent various mechanical states. Constitutive equations are established based on a modified Drucker–Prager cap plasticity model to describe the mechanical densification process. To avoid potential numerical difficulties, a transition yield surface function is introduced to smooth the intersection between the failure and cap surfaces for different shapes and octahedral profiles of the shear failure yield surface. The ISV model for the test case of a linear-shaped shear failure surface with Mises octahedral profile is implemented into a finite element code. Numerical simulations using a steel metal powder are presented to demonstrate the capabilities of the ISV cap plasticity model to represent densification of a steel powder during compaction. The formulation is general enough to also apply to other powder metals and geomaterials.

References

References
1.
Piccolroaz
,
A.
,
Bigoni
,
D.
, and
Gajo
,
A.
,
2006
, “
An Elastoplastic Framework for Granular Materials Becoming Cohesive Through Mechanical Densification—Part I: Small Strain Formulation
,”
Eur. J. Mech. A. Solids
,
25
(
2
), pp.
334
357
.
2.
Schwer
,
L. E.
, and
Murray
,
Y. D.
,
1994
, “
A Three-Invariant Smooth Cap Model With Mixed Hardening
,”
Int. J. Num. Anal. Methods Geomech.
,
18
(
10
), pp.
657
688
.
3.
Fossum
,
A. F.
, and
Brannon
,
R. M.
,
2004
, “
The Sandia Geomodel: Theory and User's Guide
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND2004-3226 UC-405
.
4.
Foster
,
C. D.
,
Regueiro
,
R. A.
,
Fossum
,
A. F.
, and
Borja
,
R. I.
,
2005
, “
Implicit Numerical Integration of a Three-Invariant, Isotropic/Kinematic Hardening Cap Plasticity Model for Geomaterials
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–51
), pp.
5109
5138
.
5.
La Ragione
,
L.
,
Prantil
,
V. C.
, and
Sharma
,
I. A.
,
2008
, “
Simplified Model for Inelastic Behavior of an Idealized Granular Material
,”
Int. J. Plast.
,
24
(
1
), pp.
168
189
.
6.
Chandler
,
H. W.
,
Sands
,
C. M.
,
Song
,
J. H.
,
Withers
,
P. J.
, and
McDonald
,
S. A.
,
2008
, “
A Plasticity Model for Powder Compaction Processes Incorporating Particle Deformation and Rearrangement
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
2056
2076
.
7.
Yin
,
Z.-Y.
, and
Chang
,
C. S.
,
2009
, “
Non-Uniqueness of Critical State Line in Compression and Extension Conditions
,”
Int. J. Numer. Anal. Methods Geomech.
,
33
(
10
), pp.
1315
1338
.
8.
Chandler
,
H. W.
, and
Sands
,
C. M.
,
2010
, “
Including Friction in the Mathematics of Classical Plasticity
,”
Int. J. Numer. Anal. Methods Geomech.
,
34
(
1
), pp.
53
72
.
9.
Zhu
,
Q. Z.
,
Shao
,
J. F.
, and
Mainguy
,
M.
,
2010
, “
A Micromechanics-Based Elastoplastic Damage Model for Granular Materials at Low Confining Pressure
,”
Int. J. Plast.
,
26
(
4
), pp.
586
602
.
10.
Kamrin
,
K.
,
2010
, “
Nonlinear Elasto-Plastic Model for Dense Granular Flow
,”
Int. J. Plast.
,
26
(
2
), pp.
167
188
.
11.
Motamedi
,
M. H.
, and
Foster
,
C. D.
,
2015
, “
An Improved Implicit Numerical Integration of a Non-Associated, Three-Invariant Cap Plasticity Model With Mixed Isotropic-Kinematic Hardening for Geomaterials
,”
Int. J. Numer. Anal. Methods Geomech.
,
39
(
17
), pp.
1853
1883
.
12.
Sandler
,
I. S.
,
2005
, “
Review of the Development of Cap Models for Geomaterials
,”
Shock Vib.
,
12
(
1
), pp.
67
71
.
13.
DorMohammadi
,
H.
, and
Khoei
,
A. R.
,
2008
, “
A Three-Invariant Cap Model with Isotropic-Kinematic Hardening Rule and Associated Plasticity for Granular Materials
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
631
656
.
14.
Das
,
A.
,
Tengattini
,
A.
,
Nguyen
,
G. D.
,
Viggiani
,
G.
,
Hall
,
S. A.
, and
Einav
,
I.
,
2014
, “
A Thermomechanical Constitutive Model for Cemented Granular Materials With Quantifiable Internal Variables—Part II: Validation and Localization Analysis
,”
J. Mech. Phys. Solids.
,
70
, pp.
382
405
.
15.
Tengattini
,
A.
,
Das
,
A.
,
Nguyen
,
G. D.
,
Viggiani
,
G.
,
Hall
,
S. A.
, and
Einav
,
I.
,
2014
, “
A Thermomechanical Constitutive Model for Cemented Granular Materials With Quantifiable Internal Variables—Part I: Theory
,”
J. Mech. Phys. Solids.
,
70
, pp.
281
296
.
16.
Kohler
,
R.
, and
Hofstetter
,
G.
,
2008
, “
A Cap Model for Partially Saturated Soils
,”
Int. J. Numer. Anal. Methods Geomech.
,
32
(
8
), pp.
981
1004
.
17.
Han
,
L. H.
,
Elliott
,
J. A.
,
Bentham
,
A. C.
,
Mills
,
A.
,
Amidon
,
G. E.
, and
Hancock
,
B. C.
,
2008
, “
A Modified Drucker–Prager Cap Model for Die Compaction Simulation of Pharmaceutical Powders
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
3088
3106
.
18.
Sinha
,
T.
,
Bharadwaj
,
R.
,
Curtis
,
J. S.
,
Hancock
,
B. C.
, and
Wassgren
,
C.
,
2010
, “
Finite Element Analysis of Pharmaceutical Tablet Compaction Using a Density Dependent Material Plasticity Model
,”
Powder Technol.
,
202
(
1–3
), pp.
46
54
.
19.
Diarra
,
H.
,
Mazel
,
V.
,
Boillon
,
A.
,
Rehault
,
L.
,
Busignies
,
V.
,
Bureau
,
S.
, and
Tchoreloff
,
P.
,
2012
, “
Finite Element Method (FEM) Modeling of the Powder Compaction of Cosmetic Products: Comparison Between Simulated and Experimental Results
,”
Powder Technol.
,
224
, pp.
233
240
.
20.
Bier
,
W.
, and
Hartmann
,
S.
,
2006
, “
A Finite Strain Constitutive Model for Metal Powder Compaction Using a Unique and Convex Single Surface Yield Function
,”
Eur. J. Mech. A. Solids.
,
25
(
6
), pp.
1009
1030
.
21.
Heisserer
,
U.
,
Hartmann
,
S.
,
Düster
,
A.
,
Bier
,
W.
,
Yosibash
,
Z.
, and
Rank
,
E.
,
2008
, “
P-FEM for Finite Deformation Powder Compaction
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
6–8
), pp.
727
740
.
22.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.
23.
Drucker
,
D. C.
,
1953
, “
Limit Analysis of Two and Three Dimensional Soil Mechanics Problems
,”
J. Mech. Phys. Solids.
,
1
(
4
), pp.
217
226
.
24.
Schofield
,
A. N.
, and
Wroth
,
C. P.
,
1968
,
Critical State Soil Mechanics
,
McGraw Hill
,
Maidenhead, UK
.
25.
Drucker
,
D. C.
,
Gibson
,
R. E.
, and
Henkel
,
D. J.
,
1957
, “
Soil Mechanics and Work-Hardening Theories of Plasticity
,”
Trans. ASCE.
,
122
, pp.
338
346
.
26.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Bow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
27.
Shima
,
S.
, and
Oyane
,
M.
,
1976
, “
Plasticity Theory for Porous Metals
,”
Inter. J. Mech. Sci.
18
(
6
), pp.
285
291
.
28.
Fleck
,
N. A.
,
Kuhn
,
L. T.
, and
McMeeking
,
R. M.
,
1992
, “
Yielding of Metal Powder Bonded by Isolated Contacts
,”
J. Mech. Phys. Solids.
,
40
(
5
), pp.
1139
1162
.
29.
Fleck
,
N. A.
,
1995
, “
On the Cold Compaction of Powders
,”
J. Mech. Phys. Solids.
,
43
(
9
), pp.
1409
1431
.
30.
Coube
,
O.
, and
Riedel
,
H.
,
2000
, “
Numerical Simulation of Metal Powder Die Compaction With Special Consideration of Cracking
,”
Powder Metall.
,
43
(
2
), pp.
123
131
.
31.
Trasorras
,
J.
,
Krauss
,
T. M.
, and
Ferguson
,
B. L.
,
1989
, “
Modeling of Powder Compaction Using the Finite Element Method
,”
Adv. Powder Metall.
,
1
, pp.
85
104
.
32.
Swan
,
C. C.
, and
Seo
,
Y. K.
,
2000
, “
A Smooth, Three-Surface Elasto-Plastic Cap Model: Rate Formulation, Integration Algorithm and Tangent Operators
,”
University of Iowa
, Iowa City, IA.
33.
Desai
,
C. S.
,
1980
, “
A General Basis for Yield, Failure, and Potential Functions in Plasticity
,”
Int. J. Numer. Anal. Methods Geomech.
,
4
(
4
), pp.
361
375
.
34.
Lade
,
P. V.
, and
Kim
,
M. K.
,
1988
, “
Single Hardening Constitutive Model for Frictional Materials—Part I: Yield Criterion and Plastic Work Contours
,”
Comput. Geotech.
,
6
(
1
), pp.
13
29
.
35.
Fossum
,
A. F.
, and
Brannon
,
R. M.
,
2007
, “
On a Viscoplastic Model for Rocks With Mechanism-Dependent Characteristic Times
,”
Acta Geotech.
,
1
(2), pp.
89
106
.
36.
DiMaggio
,
F. L.
, and
Sandler
,
I. S.
,
1971
Material Models for Granular
,”
J. Eng. Mech.
,
97
, pp.
935
950
.
37.
Gurson
,
A. L.
, and
McCabe
,
T.
,
1992
, “
Experimental Determination of Yield Functions for Compaction of Blended Metal Powders
,”
MPIF/APMI World Congress Powder Metall. Part. Mater.
, Vol.
1
, pp.
21
26
.
38.
Lode
,
W.
,
1926
, “
Versuche über den Einfuss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen Kupfer und Nickel. Z
,”
Agnew. Phys.
,
36
, pp.
913
939
.
39.
Pelessone
,
D.
,
1989
, “
A Modified Formulation of the Cap Model
,” Gulf Atomics, Technical Report No. GA-C 19579.
40.
Sandler
,
I. S.
, and
Rubin
,
D.
,
1979
, “
An Algorithm and a Modular Subroutine for the Cap Model
,”
Int. J. Numer. Anal. Methods Geomech.
,
3
(
2
), pp.
173
186
.
41.
Pavier
,
E.
, and
Doremus
,
P.
,
1999
, “
Triaxial Characterisation of Iron Powder Behavior
,”
Powder Metall.
,
42
(
4
), pp.
345
352
.
42.
Launay
,
P.
, and
Gachon
,
H.
,
1972
, “
Strain and Ultimate Strength of Concrete Under Triaxial Stress
,”
Spec. Publ.
,
34
, pp.
269
282
.
43.
Bigoni
,
D.
, and
Piccolroaz
,
A.
,
2003
, “
A New Yield Function for Geomaterials
,”
Constitutive Modelling and Analysis of Boundary Value Problems in Geotechnical Engineering
, Napoli, Italy, Apr. 22–24,
C.
Viggiani
, ed.,
Hevelius
,
Benevento, Italy
, pp.
266
281
.
44.
ABAQUS
,
2008
, “
ABAQUS: Theory Manual 6.8
,” Dassault Systèmes, Providence, RI.
45.
Majzoobi
,
G. H.
, and
Jannesari
,
S.
,
2015
Determination of the Constants of Cap Model for Compaction of Three Metal Powders
,”
Adv. Powder Technol.
,
26
(
3
), pp.
928
934
.
46.
MPIF
,
2010
, “
Method for Determination of Density of Compacted or Sintered Powder Metallurgy Products
,” Metal Powder Industries Federation, Princeton, NJ, Standard No. 42.
47.
ASTM
,
2008
, “
Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens
,” ASTM International, West Conshohocken, PA, Standard D3967-08.
48.
ASTM
,
2009
, “
Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature
,” ASTM International, West Conshohocken, PA, Standard E9-09.
49.
Birks
,
A. S.
,
Green
,
R. E.
, and
McIntire
,
P.
,
1991
,
Ultrasonic Testing: Nondestructive Testing Handbook
, Vol.
7
,
American Society for Nondestructive Testing Inc.
,
Columbus, OH
, pp.
398
402
.
50.
Sinka
,
I. C.
,
Cunningham
,
J. C.
, and
Zavaliangos
,
A.
,
2001
, “
Experimental Characterization and Numerical Simulation of Die Wall Friction in Pharmaceutical Powder Compaction
,”
PM2TEC 2001 International Conference on Powder Metallurgy & Particulate Materials
, New Orleans, LA, Vol.
1
, pp.
46
60
.
51.
Armstrong
,
S.
,
Aesoph
,
M. D.
, and
Gurson
,
A. L.
,
1995
, “
The Effects of Lubricant Content and Relative Powder Density on the Elastic, Yield and Failure Behavior of a Compacted Metal Powder
,”
Adv. Powder Metall. Part. Mater.
,
3
, pp.
31
44
.
You do not currently have access to this content.