This work reports the elastic modulus and four-point flexural strength of a gelcast ceramic, cerium dioxide (ceria), with a microporosity of nominally 20% and a grain size of 11 μm from 23 to 1500 °C. The data augment the sparse data published for ceria and extend previous results by 150 °C. The ceria tested is representative of that constituting the ligaments of a reticulated porous ceramic. The elastic modulus decreases from 90 GPa at 23 °C to 16 GPa at 1500 °C. The flexural strength is 78 MPa below 900 °C and then decreases rapidly to 5 MPa at 1500 °C. These trends are consistent with data reported for other ceramics. Comparing the measured elastic modulus to prior data obtained for lower porosity shows the minimum solid area (MSA) model can be used to extend the modulus data to other porosities. Similarly, the flexural strength data agree with prior data when the effects of specimen size, porosity, and grain size are taken into account.

References

References
1.
Gandhi
,
H. S.
,
Graham
,
G. W.
, and
McCabe
,
R. W.
,
2003
, “
Automotive Exhaust Catalysis
,”
J. Catal.
,
216
(
1–2
), pp.
433
442
.
2.
Zhong
,
L.-S.
,
Hu
,
J.-S.
,
Cao
,
A.-M.
,
Liu
,
Q.
,
Song
,
W.-G.
, and
Wan
,
L.-J.
,
2007
, “
3D Flowerlike Ceria Micro/Nanocomposite Structure and Its Application for Water Treatment and CO Removal
,”
Chem. Mater.
,
19
(
7
), pp.
1648
1655
.
3.
Maricle
,
D. L.
,
Swarr
,
T. E.
, and
Karavolis
,
S.
,
1992
, “
Enhanced Ceria—A Low-Temperature SOFC Electrolyte
,”
Solid State Ionics
,
52
(
1–3
), pp.
173
182
.
4.
Feng
,
X.
,
Sayle
,
D. C.
,
Wang
,
Z. L.
,
Paras
,
M. S.
,
Santora
,
B.
,
Sutorik
,
A. C.
,
Sayle
,
T. X. T.
,
Yang
,
Y.
,
Ding
,
Y.
,
Wang
,
X.
, and
Her
,
Y.-S.
,
2006
, “
Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres
,”
Science
,
312
(
5779
), pp.
1504
1508
.
5.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
,
2007
, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
,
21
(
4
), pp.
2287
2293
.
6.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Ambrosini
,
A.
,
Chen
,
K. S.
,
Coker
,
E. N.
,
Dedrick
,
D. E.
,
Diver
,
R. B.
,
Hogan
,
R. E.
,
Ermanoski
,
I.
,
Johnson
,
T. A.
,
Kellogg
,
G. L.
,
McDaniel
,
A. H.
,
Siegel
,
N. P.
,
Staiger
,
C. L.
, and
Stechel
,
E. B.
,
2012
, “
Final Report—Reimagining Liquid Transportation Fuels: Sunshine to Petrol
,”
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2012-0307.
7.
Bader
,
R.
,
Bala Chandran
,
R.
,
Venstrom
,
L. J.
,
Sedler
,
S. J.
,
Krenzke
,
P. T.
,
De Smith
,
R. M.
,
Banerjee
,
A.
,
Chase
,
T. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2015
, “
Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031007
.
8.
Eyring
,
L.
,
1991
, “
The Binary Lanthanide Oxides: Synthesis and Identification
,”
Synthesis of Lanthanide and Actinide Compounds
, Vol.
2
,
G.
Meyer
, and
L. R.
Morss
, eds.,
Springer
, Dordrecht, The Netherlands, pp.
187
224
.
9.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. A
,
368
(
1923
), pp.
3269
3294
.
10.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
11.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.
12.
Furler
,
P.
,
Scheffe
,
J.
,
Marxer
,
D.
,
Gorbar
,
M.
,
Bonk
,
A.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2014
, “
Thermochemical CO2 Splitting Via Redox Cycling of Ceria Reticulated Foam Structures With Dual-Scale Porosities
,”
Phys. Chem. Chem. Phys.
,
16
(
22
), pp.
10503
10511
.
13.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
.
14.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
15.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.
16.
Venstrom
,
L. J.
,
Petkovich
,
N.
,
Rudisill
,
S.
,
Stein
,
A.
, and
Davidson
,
J. H.
,
2012
, “
The Effects of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011005
.
17.
Petkovich
,
N. D.
,
Rudisill
,
S. G.
,
Venstrom
,
L. J.
,
Boman
,
D. B.
,
Davidson
,
J. H.
, and
Stein
,
A.
,
2011
, “
Control of Heterogeneity in Nanostructured Ce1−xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity
,”
J. Phys. Chem. C
,
115
(
43
), pp.
21022
21033
.
18.
Rudisill
,
S. G.
,
Venstrom
,
L. J.
,
Petkovich
,
N. D.
,
Quan
,
T.
,
Hein
,
N.
,
Boman
,
D. B.
,
Davidson
,
J. H.
, and
Stein
,
A.
,
2013
, “
Enhanced Oxidation Kinetics in Thermochemical Cycling of CeO2 Through Templated Porosity
,”
J. Phys. Chem.
,
117
(
4
), pp.
1692
1700
.
19.
Gibbons
,
W. T.
,
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Davidson
,
J. H.
, and
Jackson
,
G. S.
,
2014
, “
Ceria-Based Electrospun Fibers for Renewable Fuel Production Via Two-Step Thermal Redox Cycles for Carbon Dioxide Splitting
,”
Phys. Chem. Chem. Phys.
,
16
(
27
), pp.
14271
14280
.
20.
Hathaway
,
B. J.
,
Bala Chandran
,
R.
,
Sedler
,
S.
,
Thomas
,
D.
,
Gladen
,
A.
,
Chase
,
T.
, and
Davidson
,
J. H.
,
2016
, “
Effect of Flow Rates on Operation of a Solar Thermochemical Reactor for Splitting CO2 Via the Isothermal Ceria Redox Cycle
,”
ASME J. Sol. Energy Eng.
,
138
(
1
), p.
011007
.
21.
Hathaway
,
B. J.
,
Bala Chandran
,
R.
,
Gladen
,
A. C.
,
Chase
,
T. R.
, and
Davidson
,
J. H.
,
2016
, “
Demonstration of a Solar Reactor for Carbon Dioxide Splitting Via the Isothermal Ceria Redox Cycle and Practical Implications
,”
Energy Fuels
,
30
(
8
), pp.
6654
6661
.
22.
Adler
,
J.
,
2005
, “
Ceramic Diesel Particulate Filters
,”
Int. J. Appl. Ceram. Technol.
,
2
(
6
), pp.
429
439
.
23.
Barra
,
A. J.
, and
Ellzey
,
J. L.
,
2004
, “
Heat Recirculation and Heat Transfer in Porous Burners
,”
Combust. Flame
,
137
(
1–2
), pp.
230
241
.
24.
Chen
,
Q. Z.
,
Thompson
,
I. D.
, and
Boccaccini
,
A. R.
,
2006
, “
45S5 Bioglass®-Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
27
(
11
), pp.
2414
2425
.
25.
Lapp
,
J.
, and
Lipiński
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting Via Nonstoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
.
26.
Wachtel
,
E.
, and
Lubomirsky
,
I.
,
2011
, “
The Elastic Modulus of Pure and Doped Ceria
,”
Scrip. Mater.
,
65
(
2
), pp.
112
117
.
27.
Wygant
,
J. F.
,
1951
, “
Elastic and Flow Properties of Dense, Pure Oxide Refractories
,”
J. Am. Ceram. Soc.
,
34
(
12
), pp.
374
380
.
28.
Sato
,
K.
,
Suzuki
,
K.
,
Yashiro
,
K.
,
Kawada
,
T.
,
Yugami
,
H.
,
Hashida
,
T.
,
Atkinson
,
A.
, and
Mizusaki
,
J.
,
2009
, “
Effect of Y2O3 Addition on the Conductivity and Elastic Modulus of (CeO2)1−x(YO1.5)x
,”
Solid State Ionics
,
180
(
20–22
), pp.
1220
1225
.
29.
Sato
,
K.
,
Yugami
,
H.
, and
Hashida
,
T.
,
2004
, “
Effect of Rare-Earth Oxides on Fracture Properties of Ceria Ceramics
,”
J. Mater. Sci.
,
39
(
18
), pp.
5765
5770
.
30.
Lipińska-Chwałek
,
M.
,
Schulze-Küppers
,
F.
, and
Malzbender
,
J.
,
2015
, “
Mechanical Properties of Pure and Doped Cerium Oxide
,”
J. Eur. Ceram. Soc.
,
35
(
5
), pp.
1539
1547
.
31.
Wang
,
Y.
,
Duncan
,
K.
,
Wachsman
,
E. D.
, and
Ebrahimi
,
F.
,
2007
, “
The Effect of Oxygen Vacancy Concentration on the Elastic Modulus of Fluorite-Structured Oxides
,”
Solid State Ionics
,
178
(
1–2
), pp.
53
58
.
32.
Nakajo
,
A.
,
Kuebler
,
J.
,
Faes
,
A.
,
Vogt
,
U. F.
,
Schindler
,
H. J.
,
Chiang
,
L.-K.
,
Modena
,
S.
,
Van herle
,
J.
, and
Hocker
,
T.
,
2012
, “
Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells
,”
Ceram. Int.
,
38
(
5
), pp.
3907
3927
.
33.
Akopov
,
F. A.
, and
Poluboyarinov
,
D. N.
,
1965
, “
Some Properties of Sintered Ceria Ceramics
,”
Refractories
,
6
(
3–4
), pp.
196
201
.
34.
Kossoy
,
A.
,
Frenkel
,
A. I.
,
Feldman
,
Y.
,
Wachtel
,
E.
,
Milner
,
A.
, and
Lubomirsky
,
I.
,
2010
, “
The Origin of Elastic Anomalies in Thin Films of Oxygen Deficient Ceria, CeO2−x
,”
Solid State Ionics
,
181
(
33–34
), pp.
1473
1477
.
35.
Wang
,
Y.
,
Duncan
,
K. L.
,
Wachsman
,
E. D.
, and
Ebrahimi
,
F.
,
2007
, “
Effects of Reduction Treatment on Fracture Properties of Cerium Oxide
,”
J. Am. Ceram. Soc.
,
90
(
12
), pp.
3908
3914
.
36.
Kaiser
,
A.
,
Foghmoes
,
S.
,
Chatzichristodoulou
,
C.
,
Søgaard
,
M.
,
Glasscock
,
J. A.
,
Frandsen
,
H. L.
, and
Hendriksen
,
P. V.
,
2011
, “
Evaluation of Thin Film Ceria Membranes for Syngas Membrane Reactors—Preparation, Characterization and Testing
,”
J. Membr. Sci.
,
378
(
1–2
), pp.
51
60
.
37.
Bishop
,
S. R.
,
Duncan
,
K. L.
, and
Wachsman
,
E. D.
,
2009
, “
Defect Equilibria and Chemical Expansion in Non-Stoichiometric Undoped and Gadolinium-Doped Cerium Oxide
,”
Electrochim. Acta
,
54
(
5
), pp.
1436
1443
.
38.
Chatzichristodoulou
,
C.
,
Hendriksen
,
P. V.
, and
Hagen
,
A.
,
2010
, “
Defect Chemistry and Thermomechanical Properties of Ce0.8PrxTb0.2−xO2−δ
,”
J. Electrochem. Soc.
,
157
(
2
), pp.
B299
B307
.
39.
Chatzichristodoulou
,
C.
, and
Hendriksen
,
P. V.
,
2010
, “
Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce0.8Pr0.2O2−δ
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
B481
B489
.
40.
ASTM
,
2013
, “
Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures
,”
ASTM International
, West Conshohocken, PA, Standard No. C1211-13.
41.
Omatete
,
O. O.
,
Janney
,
M. A.
, and
Strehlow
,
R. A.
,
1991
, “
Gelcasting—A New Ceramic Forming Process
,”
Am. Ceram. Soc. Bull.
,
70
(
10
), pp.
1641
1649
.
42.
Janney
,
M. A.
, and
Omatete
,
O. O.
,
1991
, “
Method for Molding Ceramic Powders Using a Water-Based Gel Casting
,”
U.S. Patent No. #5028362
.
43.
Coakley
,
J. P.
, and
Syvitski
,
J. P. M.
,
1991
, “
SediGraph Technique
,”
Principles, Methods, and Application of Particle Size Analysis
,
J. P. M.
Syvitski
, ed.,
Cambridge University Press
,
Cambridge
, UK, pp.
129
142
.
44.
Cardarelli
,
F.
,
2008
,
Materials Handbook: A Concise Desktop Reference
,
2nd ed.
,
Springer
,
London
.
45.
Young
,
W. C.
,
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2011
,
Roark's Formulas for Stress and Strain
,
8th ed.
,
McGraw-Hill
,
New York
.
46.
Touloukian
,
Y. S.
,
Kirby
,
R. K.
,
Taylor
,
R. E.
, and
Lee
,
T. Y. R.
,
1977
,
Thermal Expansion—Nonmetallic Solids, Thermophysical Properties of Matter
, Vol.
13
,
IFI/Plenum
,
New York
.
47.
Lipińska-Chwałek
,
M.
,
Pećanac
,
G.
, and
Malzbender
,
J.
,
2013
, “
Creep Behaviour of Membrane and Substrate Materials for Oxygen Separation Units
,”
J. Eur. Ceram. Soc.
,
33
(
10
), pp.
1841
1848
.
48.
Munz
,
D.
, and
Fett
,
T.
,
1999
,
Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection
,
Springer
,
Berlin, Germany
.
49.
Munro
,
R. G.
,
1997
, “
Evaluated Material Properties for a Sintered α-Alumina
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1919
1928
.
50.
Schwartzwalder
,
K.
, and
Somers
,
A. V.
,
1963
, “
Method of Making Porous Ceramic Articles
,”
U.S. Patent No. #3090094
.
51.
Saggio-Woyansky
,
J.
,
Scott
,
C. E.
, and
Minnear
,
W. P.
,
1992
, “
Processing of Porous Ceramics
,”
Am. Ceram. Soc. Bull.
,
71
(
11
), pp.
1674
1682
.
52.
Zhu
,
X.
,
Jiang
,
D.
,
Tan
,
S.
, and
Zhang
,
Z.
,
2001
, “
Improvement in the Strut Thickness of Reticulated Porous Ceramics
,”
J. Am. Ceram. Soc.
,
84
(
7
), pp.
1654
1656
.
53.
Lange
,
F. F.
, and
Miller
,
K. T.
,
1987
, “
Open-Cell, Low-Density Ceramics Fabricated From Reticulated Polymer Substrates
,”
Adv. Ceram. Mater.
,
2
(
4
), pp.
827
831
.
54.
Plateau
,
J. A. F.
,
1873
,
Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
,
Gauthier-Villars
,
Paris, France
.
55.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
2nd ed.
(Cambridge Solid State Science Series),
Cambridge University Press
,
New York
.
56.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London. Ser. A
,
382
(
1782
), pp.
43
59
.
57.
Gent
,
A. N.
, and
Thomas
,
A. G.
,
1959
, “
The Deformation of Foamed Elastic Materials
,”
J. Appl. Polym. Sci.
,
1
(
1
), pp.
107
113
.
58.
Lederman
,
J. M.
,
1971
, “
The Prediction of the Tensile Properties of Flexible Foams
,”
J. Appl. Polym. Sci.
,
15
(
3
), pp.
693
703
.
59.
Zwissler
,
J. G.
, and
Adams
,
M. A.
,
1983
, “
Fracture Mechanics of Cellular Glass
,”
Fracture Mechanics of Ceramics
, Vol.
6
,
R. C.
Bradt
,
A. G.
Evans
,
D. P. H.
Hasselman
, and
F. F.
Lange
, eds.,
Plenum Press
, New York, pp.
211
241
.
60.
Gong
,
L.
,
Kyriakides
,
S.
, and
Jang
,
W.-Y.
,
2005
, “
Compressive Response of Open-Cell Foams. Part I: Morphology and Elastic Properties
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1355
1379
.
61.
Hagiwara
,
H.
, and
Green
,
D. J.
,
1987
, “
Elastic Behavior of Open-Cell Alumina
,”
J. Am. Ceram. Soc.
,
70
(
11
), pp.
811
815
.
62.
Colombo
,
P.
,
Hellmann
,
J. R.
, and
Shelleman
,
D. L.
,
2001
, “
Mechanical Properties of Silicon Oxycarbide Ceramic Foams
,”
J. Am. Ceram. Soc.
,
84
(
10
), pp.
2245
2251
.
63.
Dhara
,
S.
, and
Bhargava
,
P.
,
2006
, “
Influence of Slurry Characteristics on Porosity and Mechanical Properties of Alumina Foams
,”
Int. J. Appl. Ceram. Technol.
,
3
(
5
), pp.
382
392
.
64.
Pratt
,
V.
,
1987
, “
Direct Least-squares Fitting of Algebraic Surfaces
,”
Comput. Graph.
,
21
(
4
), pp.
145
152
.
65.
ASTM
,
2014
, “
Standard Test Methods for Determining Average Grain Size
,”
ASTM International
, West Conshohocken, PA, Standard No. E112-13.
66.
Rice
,
R. W.
,
1996
, “
The Porosity Dependence of Physical Properties of Materials: A Summary Review
,”
Key Eng. Mater.
,
115
, pp.
1
20
.
67.
Rice
,
R. W.
,
1996
, “
Evaluation and Extension of Physical Property-Porosity Models Based on Minimum Solid Area
,”
J. Mater. Sci.
,
31
(
1
), pp.
102
118
.
68.
Rice
,
R. W.
,
1996
, “
Comparison of Physical Property-Porosity Behaviour With Minimum Solid Area Models
,”
J. Mater. Sci.
,
31
(
6
), pp.
1509
1528
.
69.
Radovic
,
M.
,
Lara-Curzio
,
E.
, and
Riester
,
L.
,
2004
, “
Comparison of Different Experimental Techniques for Determination of Elastic Properties of Solids
,”
Mater. Sci. Eng.: A
,
368
(
1–2
), pp.
56
70
.
70.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.
71.
ASTM
,
2013
, “
Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics
,”
ASTM International
, West Conshohocken, PA, Standard No. C1239-13.
72.
Pećanac
,
G.
,
Foghmoes
,
S.
,
Lipińska-Chwałek
,
M.
,
Baumann
,
S.
,
Beck
,
T.
, and
Malzbender
,
J.
,
2013
, “
Strength Degradation and Failure Limits of Dense and Porous Ceramic Membrane Materials
,”
J. Eur. Ceram. Soc.
,
33
(
13–14
), pp.
2689
2698
.
73.
Quinn
,
G. D.
,
2003
, “
Weibull Strength Scaling for Standardized Rectangular Flexure Specimens
,”
J. Am. Ceram. Soc.
,
86
(
3
), pp.
508
510
.
74.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. Sect. B
,
64
(
9
), pp.
747
753
.
75.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
, pp.
25
28
.
76.
Maschio
,
S.
,
Sbaizero
,
O.
, and
Meriani
,
S.
,
1992
, “
Mechanical Properties in the Ceria-Zirconia System
,”
J. Eur. Ceram. Soc.
,
9
(
2
), pp.
127
132
.
77.
Cutler
,
R. A.
, and
Meixner
,
D. L.
,
2003
, “
Ceria–Lanthanum Strontium Manganite Composites for Use in Oxygen Generation Systems
,”
Solid State Ionics
,
159
(
1–2
), pp.
9
19
.
You do not currently have access to this content.