The differential scheme is extended to predict the effective properties of multiphase magnetoelectroelastic composite materials. The prediction of effective properties is done gradually by adding a series of incremental additions of a small volume of particulate phase materials to an initial material (matrix phase). The construction process is compatible with high volume concentration of inclusion. A system of coupled differential equations is formulated and its numerical solution leads to effective properties of reinforced magnetoelectroelastic composites. For the numerical results, two-phase and three-phase magnetoelectroelastic composites are considered. The effective properties are presented as function of volume fractions and shapes of inclusions and compared with predictions based on the Mori–Tanaka and incremental self-consistent models.

References

References
1.
Eshelby
,
J.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. Lond. Soc.
, A,
241
(
1226
), pp.
376
3969
.
2.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Martinus-Nijhoff
,
Leiden, The Netherlands
.
3.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
2nd ed.
,
Elsevier
,
Amsterdam, The Netherlands
.
4.
Qu
,
J.
, and
Cherkaoui
,
M.
,
2006
,
Fundamentals of Micromechanics of Solids
,
Wiley
,
Hoboken, NJ
.
5.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
1998
, “
Micromechanics of Magnetoelectroelastic Composite Materials: Average Fields and Effective Behavior
,”
J. Intell. Mater. Syst. Struct.
,
9
(
6
), pp.
404
416
.
6.
Wu
,
T.
, and
Huang
,
J. H.
,
2000
, “
Closed-Form Solution for the Magnetoelectric Coupling Coefficients in Fibrous Composites With Piezoelectric and Piezomagnetic Phases
,”
Int. J. Solids Struct.
,
37
(
21
), pp.
2981
3009
.
7.
Li
,
J. Y.
,
2000
, “
Magnetoelectroelastic Multi-Inclusion and Inhomogeneity Problems and Their Applications in Composite Materials
,”
Int. J. Eng. Sci.
,
38
(
18
), pp.
1993
2011
.
8.
Feng
,
X.
,
Fang
,
D.
, and
Hwang
,
K.
,
2004
, “
Closed-Form Solution for Piezomagnetic Inhomogeneities Embedded in a Non-Piezomagnetic Matrix
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1007
1019
.
9.
Zhang
,
Z. K.
, and
Soh
,
A. K.
,
2005
, “
Micromechanics Predictions of the Effective Moduli of Magnetoelectroelastic Composite Materials
,”
Eur. J. Mech. A/Solids
,
24
(
6
), pp.
1054
1067
.
10.
Srinivas
,
S.
, and
Li
,
J. Y.
,
2005
, “
The Effective Magnetoelectric Coefficients of Polycrystalline Multiferroic Composites
,”
Acta Mater. J.
,
53
(
15
), pp.
4135
4142
.
11.
Lee
,
J.
,
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
,
2005
, “
Effective Properties of Three-Phase Electro-Magneto-Elastic Composites
,”
Int. J. Eng. Sci.
,
43
(
10
), pp.
790
825
.
12.
Srinivas
,
S.
,
Li
,
J. Y.
,
Zhou
,
Y. C.
, and
Soh
,
A. K.
,
2006
, “
The Effective Magnetoelectroelastic Moduli of Matrix-Based Multiferroic Composites
,”
J. Appl. Phys.
,
99
(
4
), p.
043905
.
13.
Tong
,
Z. H.
,
Lo
,
S. H.
,
Jiang
,
C. P.
, and
Cheung
,
Y. K.
,
2008
, “
An Exact Solution for the Three-Phase Thermo-Electro-Magneto-Elastic Cylinder Model and Its Application to Piezoelectric-Magnetic Fiber Composites
,”
Int. J. Solids Struct.
,
45
(
20
), pp.
5205
5219
.
14.
Bakkali
,
A.
,
Azrar
,
L.
, and
Fakri
,
N.
,
2011
, “
Modeling of Effective Properties of Multiphase Magnetoelectroelastic Heterogeneous Materials
,”
J. Comput. Mater. Continua
,
23
(3), pp.
201
231
.
15.
Bakkali
,
A.
,
Azrar
,
L.
, and
Aljinaidi
,
A. A.
,
2013
, “
Micromechanical Modeling of Magnetoelectroelastic Composite Materials With Multi-Coated Inclusions and Functionally Graded Interphases
,”
Intell. Mater. Syst. Struct.
,
24
(
14
), pp.
1754
1769
.
16.
Azrar
,
L.
,
Bakkali
,
A.
, and
Aljinaidi
,
A. A.
,
2014
, “
Frequency and Time Viscoelectroelastic Effective Properties Modeling of Heterogeneous and Multi-Coated Piezoelectric Composite Materials
,”
Compos. Struct.
,
113
, pp.
281
297
.
17.
McLaughlin
,
R.
,
1977
, “
A Study of Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(
4
), pp.
237
244
.
18.
Norris
,
A. N.
,
1985
, “
A Differential Scheme for the Effective Moduli of the Composites
,”
Mech. Mater.
,
4
(
1
), pp.
1
16
.
19.
Hashin
,
Z.
,
1988
, “
The Differential Scheme and Its Applications to Cracked Materials
,”
J. Mech. Phys. Solids
,
36
(
6
), pp.
719
734
.
20.
Norris
,
A. N.
,
1989
, “
An Examination of the Mori–Tanaka Effective Medium Approximation for Multi-Phase Composites
,”
ASME J. App. Mech.
,
56
(
1
), pp.
83
88
.
21.
Dunn
,
M. L.
, and
Taya
,
M.
,
1993
, “
Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites
,”
Int. J. Solids Struct.
,
30
(
2
), pp.
161
175
.
22.
Giordano
,
S.
,
2003
, “
Differential Schemes for the Elastic Characterisation of Dispersions of Randomly Oriented Ellipsoids
,”
Eur. J. Mech. A/Solids
,
22
(
6
), pp.
885
902
.
23.
Koutsawa
,
Y.
,
Belouettar
,
S.
,
Makradi
,
A.
, and
Nasser
,
H.
,
2010
, “
Sensitivities of Effective Properties Computed Using Micromechanics Differential Schemes and High Order Taylor Series: Application to Piezo-Polymer Composites
,”
Mech. Res. Commun.
,
37
(
5
), pp.
489
494
.
24.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.
You do not currently have access to this content.