The use of lightweight materials in the automotive industry for structural parts has been increasing in recent years in order to reduce the overall vehicle's weight. New innovative lighter materials are being developed nowadays to accomplish that objective. In order to keep or even increase passenger's safety, structural parts made of these materials need to withstand static and impact loads within a range of different temperatures along the vehicle's life. The effect of these conditions when joining these dissimilar lighter materials is a critical issue to be considered when designing the car's body. In this paper, the strength under real car conditions of single lap joints (SLP) made of aluminum alloy (AA) bonded to carbon fiber reinforced polymer (CFRP) adherends was studied. A new crash-resistant epoxy adhesive was used to bond these lightweight materials and an extended characterization of its cohesive properties was carried out. The single lap joints were tested at temperatures of −30, +23, and +80 °C under quasi-static and impact loading. The data obtained was used to perform simple numerical models of the single lap joints under static and impact loads. The experimental results showed an expected increase of the joints strength with the strain rate. The joints behavior was highly influenced by the adherends, especially by the aluminum yielding at high and room temperatures. Delamination of the composite was obtained at low and room temperatures, which explained the strain rate dependence of the failure load. The numerical models predicted with good accuracy the strength of the joints under both static and impact loads.

References

References
1.
da Silva
,
L. F. M.
,
Öchsner
,
A.
, and
Adams
,
R. D.
,
2011
,
Handbook of Adhesion Technology
,
Springer
,
Berlin
.
2.
Marques
,
E. A. S.
,
da Silva
,
L. F. M.
,
Banea
,
M. D.
, and
Carbas
,
R. J. C.
,
2015
, “
Adhesive Joints for Low- and High-Temperature Use: An Overview
,”
J. Adhes.
,
91
(
7
), pp.
556
585
.
3.
Pethrick
,
R. A.
,
2015
, “
Design and Ageing of Adhesives for Structural Adhesive Bonding—A Review
,”
Proc. IMechE Part L
,
229
(
5
), pp.
349
379
.
4.
Lutz
,
A.
,
Droste
,
A.
, and
Brändli
,
C.
,
2013
,
Structural Bonding in Lightweight Vehicle Construction: Characteristics of Modern Structural Adhesives, Simulation and Application in Bodyshell Work and During Assembly
,
Süddeutscher Verlag
, Munich, Germany.
5.
Zhang
,
F.
,
Yang
,
X.
,
Xia
,
Y.
,
Zhou
,
Q.
,
Wang
,
H.-P.
, and
Yu
,
T.-X.
,
2015
, “
Experimental Study of Strain Rate Effects on the Strength of Adhesively Bonded Joints After Hygrothermal Exposure
,”
Int. J. Adhes. Adhes.
,
56
, pp.
3
12
.
6.
Saldanha
,
D. F. S.
,
Canto
,
C. M. S.
,
da Silva
,
L. F. M.
,
Carbas
,
R. J. C.
,
Chaves
,
F. J. P.
,
Nomura
,
K.
, and
Ueda
,
T.
,
2013
, “
Mechanical Characterization of a High Elongation and High Toughness Epoxy Adhesive
,”
Int. J. Adhes. Adhes.
,
47
, pp.
91
98
.
7.
da Silva
,
L. F. M.
,
Dillard
,
D. A.
,
Blackman
,
B.
, and
Adams
,
R. D.
, eds.,
2012
,
Testing Adhesive Joints: Best Practices
,
Wiley
,
New York
.
8.
Beevers
,
A.
, and
Ellis
,
M.
,
1984
, “
Impact Behavior of Bonded Mild Steel Lap Joints
,”
Int. J. Adhes. Adhes.
4
(
1
), pp.
13
16
.
9.
Loureiro
,
A.
,
da Silva
,
L. F. M.
,
Sato
,
C.
, and
Figueiredo
,
M. A. V.
,
2010
, “
Comparison of the Mechanical Behavior Between Stiff and Flexible Adhesive Joints for the Automotive Industry
,”
J. Adhes.
,
86
(
7
), pp.
765
787
.
10.
Banea
,
M.
,
de Sousa
,
F.
,
da Silva
,
L.
,
Campilhod
,
R. D. S. G.
, and
Bastos de Pereira
,
A. M.
,
2011
, “
Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive
,”
J. Adhes. Sci. Technol.
,
25
(
18
), pp.
2461
2474
.
11.
Goglio
,
L.
,
Peroni
,
L.
,
Peroni
,
M.
, and
Rossetto
,
M.
,
2008
, “
High Strain-Rate Compression and Tension Behavior of an Epoxy Bi-Component Adhesive
,”
Int. J. Adhes. Adhes.
,
28
(
7
), pp.
329
339
.
12.
Biel
,
A.
,
Stigh
,
U.
, and
Walander
,
T. A.
,
2013
, “
A Critical Study of an Alternative Method to Measure Cohesive Properties of Adhesive Layers
,” 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety (
ECF19
), Kazan, Russia, Aug. 26–31.
13.
Zgoul
,
M.
, and
Crocombe
,
A.
,
2004
, “
Numerical Modeling of Lap Joints Bonded With a Rate-Dependent Adhesive
,”
Int. J. Adhes. Adhes.
,
24
(
4
), pp.
355
366
.
14.
Harding
,
J.
, and
Welsh
,
L. M.
,
1983
, “
A Tensile Testing Technique for Fibre-Reinforced Composites at Impact Rates of Strain
,”
J. Mater. Sci.
,
18
(
6
), pp.
1810
1826
.
15.
Taniguchi
,
N.
,
Nishiwaki
,
T.
, and
Kawada
,
H.
,
2007
, “
Tensile Strength of Unidirectional CFRP Laminate Under High Strain Rate
,”
Adv. Compos. Mater.
,
16
(
2
), pp.
167
180
.
16.
Körber
,
H.
,
2010
, “
Mechanical Response of Advanced Composites Under High Strain Rates
,” Doctoral thesis, Universidade do Porto, Porto, Portugal.
17.
Grant
,
L.
,
Adams
,
R.
, and
da Silva
,
L. F. M.
,
2009
, “
Effect of the Temperature on the Strength of Adhesively Bonded Single Lap and T Joints for the Automotive Industry
,”
Int. J. Adhes. Adhes.
,
29
(
5
), pp.
535
542
.
18.
Carlberger
,
T.
,
Biel
,
A.
, and
Stigh
,
U.
,
2009
, “
Influence of Temperature and Strain Rate on Cohesive Properties of a Structural Epoxy Adhesive
,”
Int. J. Fract.
,
155
(
2
), pp.
155
166
.
19.
Sharon
,
G.
,
Dodiuk
,
H.
, and
Kenig
,
S.
,
1989
, “
Effects of Loading Rate and Temperature on the Mechanical Properties of Structural Adhesives Containing a Carrier
,”
J. Adhes.
,
31
(
1
), pp.
21
31
.
20.
Banea
,
M.
,
da Silva
,
L.
, and
Campilho
,
R.
,
2011
, “
Mode I Fracture Toughness of Adhesively Bonded Joints as a Function of Temperature: Experimental and Numerical Study
,”
Int. J. Adhes. Adhes.
,
31
(
5
), pp.
273
279
.
21.
Kaufman
,
J. G.
,
1999
,
Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures
, Vol.
29
,
The Aluminum Association and ASM International
, Materials Park, OH.
22.
Campilho
,
R. D. S. G.
,
de Moura
,
M.
,
Pinto
,
A.
,
Moraisc
,
J. J. L.
, and
Domingues
,
J. J. M. S.
,
2009
, “
Modeling the Tensile Fracture Behavior of CFRP Scarf Repairs
,”
Compos. Part B
,
40
(
2
), pp.
149
157
.
23.
Campilho
,
R.
,
2008
, “
Repair of Composite and Wood Structures
,” Doctoral thesis, Universidade do Porto, Porto, Portugal.
24.
de Moura
,
M.
,
Gonçalves
,
J.
,
Chousal
,
J.
, and
Campilho
,
R. D. S. G.
,
2008
, “
Cohesive and Continuum Mixed-Mode Damage Models Applied to the Simulation of the Mechanical Behavior of Bonded Joints
,”
Int. J. Adhes. Adhes.
,
28
(
8
), pp.
419
426
.
25.
de Moura
,
M.
,
Campilho
,
R.
, and
Gonçalves
,
J.
,
2008
, “
Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints Under Pure Mode I Loading
,”
Compos. Sci. Technol.
,
68
(
10–11
), pp.
2224
2230
.
26.
Carbas
,
R. J. C.
,
da Silva
,
L. F. M.
,
Marques
,
E. A. S.
, and
Lopes
,
A. M.
,
2013
, “
Effect of Post-Cure on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives
,”
J. Adhes. Sci. Technol.
,
27
(
23
), pp.
2542
2557
.
27.
Carbas
,
R. J. C.
,
Marques
,
E. A. S.
,
da Silva
,
L. F. M.
, and
Lopes
,
A. M.
,
2014
, “
Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives
,”
J. Adhes.
,
90
(
1
), pp.
104
119
.
28.
Armstrong
,
K.
,
1997
, “
Long-Term Durability in Water of Aluminum Alloy Adhesive Joints Bonded With Epoxy Adhesives
,”
Int. J. Adhes. Adhes.
,
17
(
2
), pp.
89
105
.
29.
Bland
,
D. J.
,
Kinloch
,
A. J.
, and
Watts
,
J. F.
,
2013
, “
The Role of the Surface Pretreatment in the Durability of Aluminum-Alloy Structural Adhesive Joints: Mechanisms of Failure
,”
J. Adhes.
,
89
(
5
), pp.
369
397
.
30.
Goglio
,
L.
, and
Rezaei
,
M.
,
2013
, “
Effect of Different Substrate Pre-Treatments on the Resistance of Aluminum Joints to Moist Environments
,”
J. Adhes.
,
89
(
10
), pp.
769
784
.
31.
Lunder
,
O.
,
Olsen
,
B.
, and
Nisancioglu
,
K.
,
2002
, “
Pre-Treatment of AA6060 Aluminum Alloy for Adhesive Bonding
,”
Int. J. Adhes. Adhes.
,
22
(
2
), pp.
143
150
.
32.
Banea
,
M.
,
da Silva
,
L. F. M.
, and
Campilho
,
R.
,
2010
, “
Temperature Dependence of the Fracture Toughness of Adhesively Bonded Joints
,”
J. Adhes. Sci. Technol.
,
24
(
11–12
), pp.
2011
2026
.
33.
Gonçalves
,
J.
,
de Moura
,
M.
,
Magalhães
,
A.
, and
de Castro
,
P. M. S. T.
,
2003
, “
Application of Interface Finite Elements to Three-Dimensional Progressive Failure Analysis of Adhesive Joints
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
(
5
), pp.
479
486
.
34.
Roy Chowdhury
,
S.
, and
Narasimhan
,
R.
,
2000
, “
A Finite Element Analysis of Quasistatic Crack Growth in a Pressure Sensitive Constrained Ductile Layer
,”
Eng. Fract. Mech.
,
66
(
6
), pp.
551
571
.
35.
Madhusudhana
,
K. S.
, and
Narasimhan
,
R.
,
2002
, “
Experimental and Numerical Investigations of Mixed Mode Crack Growth Resistance of a Ductile Adhesive Joint
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
865
883
.
36.
Pinto
,
A. M. G.
,
Magalhães
,
A.
,
Campilho
,
R. D. S. G.
,
de Moura
,
M. F. S. F.
, and
Baptista
,
A. P. M.
,
2009
, “
Single-Lap Joints of Similar and Dissimilar Adherends Bonded With an Acrylic Adhesive
,”
J. Adhes.
,
85
(
6
), pp.
351
376
.
37.
Ling
,
Y.
,
1996
, “
Uniaxial True Stress-Strain After Necking
,”
AMP J. Technol.
,
5
, pp.
37
48
.
38.
Higuchi
,
I.
,
Sawa
,
T.
, and
Suga
,
H.
,
2002
, “
Three-Dimensional Finite Element Analysis of Single-Lap Adhesive Joints Under Impact Loads
,”
J. Adhes. Sci. Technol.
,
16
(
12
), pp.
1585
1601
.
39.
Liao
,
L.
,
Kobayashi
,
T.
,
Sawa
,
T.
, and
Goda
,
Y.
,
2011
, “
3-D FEM Stress Analysis and Strength Evaluation of Single-Lap Adhesive Joints Subjected to Impact Tensile Loads
,”
Int. J. Adhes. Adhes.
,
31
(
7
), pp.
612
619
.
40.
Liao
,
L.
,
Sawa
,
T.
, and
Huang
,
C.
,
2013
, “
Experimental and FEM Studies on Mechanical Properties of Single-Lap Adhesive Joint With Dissimilar Adherends Subjected to Impact Tensile Loadings
,”
Int. J. Adhes. Adhes.
,
44
, pp.
91
98
.
41.
Sawa
,
T.
,
Higuchi
,
I.
, and
Suga
,
H.
,
2003
, “
Three-Dimensional Finite Element Stress Analysis of Single-Lap Adhesive Joints of Dissimilar Adherends Subjected to Impact Tensile Loads
,”
J. Adhes. Sci. Technol.
,
17
(
16
), pp.
2157
2174
.
42.
Dabboussi
,
W.
, and
Nemes
,
J.
,
2005
, “
Modeling of Ductile Fracture Using the Dynamic Punch Test
,”
Int. J. Mech. Sci.
,
47
(
8
), pp.
1282
1299
.
43.
NsiaMPa
,
N.
,
Coghe
,
F.
, and
Dyckmans
,
G.
,
2009
, “
Numerical Investigation of the Bodywork Effect (K-Effect)
,”
Ninth International Conference on the Mechanical and Physical Behavior of Materials Under Dynamic Loading
(
DYMAT 2009
), Brussels, Belgium, Sept. 9–11, pp.
1561
1569
.
44.
Lesuer
,
D. R.
,
Kay
,
G.
, and
LeBlanc
,
M.
,
1999
, “
Modeling Large Strain, High Rate Deformation in Metals
,”
Third Biennial Tri-Laboratory Engineering Conference Modeling and Simulation
, Pleasanton, CA, Nov. 2–3.
45.
Singh
,
N.
,
Cadoni
,
E.
,
Singha
,
M.
, and
Gupta
,
N. K.
,
2012
, “
Mechanical Behavior of a Structural Steel at Different Rates of Loading
,”
International Symposium on Engineering Under Uncertainty: Safety Assessment and Management
(
ISEUSAM
), Bengal, India, Jan. 4–6, pp.
859
868
.
You do not currently have access to this content.