Design of high-performance power lines with advanced materials is indispensable to effectively eliminate losses in electrical power transmission and distribution (T&D) lines. In this study, aluminum conductor composite core with carbon nanostructure (ACCC–CNS) coating in a multilayered architecture is considered as a novel design alternative to conventional aluminum conductor steel-reinforced (ACSR) transmission line. In the multiphysics approach presented herein, first, electrothermal finite element analysis (FEA) of the ACSR line is performed to obtain its steady-state temperature for a given current. Subsequently, the sag of the ACSR line due to self-weight and thermal expansion is determined by performing thermostructural analysis employing an analytical model. The results are then verified with those obtained from the FEA of the ACSR line. The electrothermal finite element (FE) model and the thermostructural analytical model are then extended to the ACCC–CNS line. The results indicate that the ACCC–CNS line has higher current-carrying capacity (CCC) and lower sag compared to those of the ACSR line. Motivated by the improved performance of the ACCC–CNS line, a systematic parametric study is conducted in order to determine the optimum ampacity, core diameter, and span length. The findings of this study would provide insights into the optimal design of high-performance overhead power lines.

References

References
1.
Pal
,
G.
, and
Kumar
,
S.
,
2016
, “
Modeling of Carbon Nanotubes and Carbon Nanotube–Polymer Composites
,”
Prog. Aerosp. Sci.
,
80
, pp.
33
58
.
2.
Pal
,
G.
, and
Kumar
,
S.
,
2016
, “
Multiscale Modeling of Effective Electrical Conductivity of Short Carbon Fiber-Carbon Nanotube-Polymer Matrix Hybrid Composites
,”
Mater. Des.
,
89
, pp.
129
136
.
3.
Arif
,
M. F.
,
Kumar
,
S.
, and
Shah
,
T.
,
2016
, “
Tunable Morphology and Its Influence on Electrical, Thermal and Mechanical Properties of Carbon Nanostructure-Buckypaper
,”
Mater. Des.
,
101
, pp.
236
244
.
4.
Adams
,
H.
, and
Reynolds Metals Co
,
1974
, “
Steel Supported Aluminum Overhead Conductors
,”
U.S. Patent No. 3,813,481
.
5.
Deve
,
H.
, and
Anderson
,
T.
,
2003
, “
3M Aluminum Conductor Composite Reinforced Technical Notebook (795 kcmil Family): Conductor and Accessory Testing
,” 3M, St. Paul, MN.
6.
CTC Global
,
2011
, “
Engineering Transmission Lines With ACCC Conductor
,”
1st ed.
,
CTC Global
,
Irvine, CA
.
7.
Alawar
,
A.
,
Bosze
,
E. J.
, and
Nutt
,
S. R.
,
2005
, “
A Composite Core Conductor for Low Sag at High Temperatures
,”
IEEE Trans. Power Delivery
,
20
(
3
), pp.
2193
2199
.
8.
Burks
,
B.
,
Armentrout
,
D. L.
, and
Kumosa
,
M.
,
2010
, “
Failure Prediction Analysis of an ACCC Conductor Subjected to Thermal and Mechanical Stresses
,”
IEEE Trans. Dielectr. Electr. Insul.
,
17
(
2
), pp.
588
596
.
9.
Burks
,
B.
,
Armentrout
,
D.
, and
Kumosa
,
M.
,
2011
, “
Characterization of the Fatigue Properties of a Hybrid Composite Utilized in High Voltage Electric Transmission
,”
Composites, Part A
,
42
(
9
), pp.
1138
1147
.
10.
Burks
,
B.
,
Middleton
,
J.
, and
Kumosa
,
M.
,
2012
, “
Micromechanics Modeling of Fatigue Failure Mechanisms in a Hybrid Polymer Matrix Composite
,”
Compos. Sci. Technol.
,
72
(
15
), pp.
1863
1869
.
11.
Hoffman
,
J.
,
Middleton
,
J.
, and
Kumosa
,
M.
,
2015
, “
Effect of a Surface Coating on Flexural Performance of Thermally Aged Hybrid Glass/Carbon Epoxy Composite Rods
,”
Compos. Sci. Technol.
,
106
, pp.
141
148
.
12.
Kocar
,
I.
, and
Ertas
,
A.
,
2004
, “
Thermal Analysis for Determination of Current Carrying Capacity of PE and XLPE Insulated Power Cables Using Finite Element Method
,”
12th IEEE Mediterranean Electrotechnical Conference
,
MELECON 2004
, Dubrovnik, Croatia, May 12–15, Vol.
3
, pp.
905
908
.
13.
Karahan
,
M.
, and
Kalenderli
,
O.
,
2011
, “
Coupled Electrical and Thermal Analysis of Power Cables Using Finite Element Method
,”
Heat Transfer—Engineering Applications
,
V. S.
Vikhrenko
, ed.,
InTech
,
Rijeka, Croatia
, pp.
205
230
.
14.
Hwang
,
C. C.
, and
Jiang
,
Y. H.
,
2003
, “
Extensions to the Finite Element Method for Thermal Analysis of Underground Cable Systems
,”
Electr. Power Syst. Res.
,
64
(
2
), pp.
159
164
.
15.
Nguyen
,
N.
,
Vu
,
P.
, and
Tlusty
,
J.
,
2010
, “
New Approach of Thermal Field and Ampacity of Underground Cables Using Adaptive hp-FEM
,”
IEEE PES T&D 2010
, New Orleans, LA, Apr. 19–22.
16.
Mensah-Bonsu
,
C.
,
Krekeler
,
U. F.
,
Heydt
,
G. T.
,
Hoverson
,
Y.
,
Schilleci
,
J.
, and
Agrawal
,
B. L.
,
2002
, “
Application of the Global Positioning System to the Measurement of Overhead Power Transmission Conductor Sag
,”
IEEE Trans. Power Delivery
,
17
(
1
), pp.
273
278
.
17.
Keshavarzian
,
M.
, and
Priebe
,
C. H.
,
2000
, “
Sag and Tension Calculations for Overhead Transmission Lines at High Temperatures-Modified Ruling Span Method
,”
IEEE Trans. Power Delivery
,
15
(
2
), pp.
777
783
.
18.
de Villiers
,
W.
,
Cloete
,
J. H.
,
Wedepohl
,
L. M.
, and
Burger
,
A.
,
2008
, “
Real-Time Sag Monitoring System for High-Voltage Overhead Transmission Lines Based on Power-Line Carrier Signal Behavior
,”
IEEE Trans. Power Delivery
,
23
(
1
), pp.
389
395
.
19.
Albizu
,
I.
,
Mazon
,
A. J.
, and
Zamora
,
I.
,
2009
, “
Flexible Strain-Tension Calculation Method for Gap-Type Overhead Conductors
,”
IEEE Trans. Power Delivery
,
24
(
3
), pp.
1529
1537
.
20.
Du
,
Y.
, and
Liao
,
Y.
,
2011
, “
Online Estimation of Power Transmission Line Parameters, Temperature and Sag
,”
North American Power Symposium
(
NAPS
), Boston, MA, Aug. 4–6.
21.
Shah
,
T. K.
,
Gardner
,
S. H.
,
Alberding
,
M. R.
, and
Applied Nanostructured Solutions, LLC
,
2012
, “
CNT-Infused Fiber and Method Therefor
,”
U.S. Patent No. 8,158,217
.
22.
Malet
,
B. K.
,
Shah
,
T. K.
, and
Applied Nanostructured Solutions
,
2014
, “
Glass Substrates Having Carbon Nanotubes Grown Thereon and Methods for Production Thereof
,”
U.S. Patent No. 8,784,937
.
23.
Shah
,
T. K.
,
Malecki
,
H. C.
,
Adcock
,
D. J.
, and
Applied Nanostructured Solutions
,
2014
, “
CNT-Based Resistive Heating for Deicing Composite Structures
,”
U.S. Patent No. 8,664,573
.
24.
IEEE
,
2006
, “
IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors
,” IEEE, Piscataway, NJ, Standard No. 738-2006.
25.
Southwire
,
2014
, “
ACSR: Aluminum Conductor Steel Reinforced Bare, 11-4ACSR
,” Southwire Company, LLC, Carrollton, GA.
26.
Henry
,
S. D.
,
Frueh
,
S. E.
,
Boring
,
R.
,
Levicki
,
D.
, and
Harrision
,
L.
,
1993
,
ASM Specialty Handbook, Aluminum and Aluminum Alloys
,
ASM International
,
Materials Park, OH
, pp.
658
662
.
27.
Aluminum Association
,
1971
,
Aluminum Electrical Conductor Handbook
,
The Aluminum Association
,
Arlington, VA
.
28.
Gandy
,
D.
,
2007
,
Carbon Steel Handbook
,
Electric Power Research Institute
,
Palo Alto, CA
.
29.
Spitalsky
,
Z.
,
Tasis
,
D.
,
Papagelis
,
K.
, and
Galiotis
,
C.
,
2010
, “
Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties
,”
Prog. Polym. Sci.
,
35
(
3
), pp.
357
401
.
30.
Hartman
,
D. R.
,
Greenwood
,
M. E.
, and
Miller
,
D. M.
,
1994
, “
High Strength Glass Fibers
,”
39th International SAMPE Symposium and Exhibition: Moving Forward With 50 Years of Leadership in Advanced Materials
, Anaheim, CA, Apr. 11–14, Vol.
39
, pp.
521
533
.
31.
Vilatela
,
J. J.
,
Khare
,
R.
, and
Windle
,
A. H.
,
2012
, “
The Hierarchical Structure and Properties of Multifunctional Carbon Nanotube Fibre Composites
,”
Carbon
,
50
(
3
), pp.
1227
1234
.
32.
Kirkpatrick
,
A. T.
,
2015
, “
Heat Transfer Mechanisms
,” Colorado State University, Fort Collins, CO.
33.
Alawar
,
A.
,
Bosze
,
E. J.
, and
Nutt
,
S. R.
,
2006
, “
A Hybrid Numerical Method to Calculate the Sag of Composite Conductors
,”
Electr. Power Syst. Res.
,
76
(
5
), pp.
389
394
.
34.
Thrash
,
R.
,
Hudson
,
G.
,
Cooper
,
D.
, and
Sanders
,
G.
,
1994
, “
Overhead Conductor Manual
,”
1st ed.
,
Southwire Company
,
Carrollton, GA
.
You do not currently have access to this content.