Currently, available results for the large deflection of circular isotropic membranes are valid for Poisson's ratio of 0.2, 0.3, and 0.4 only. This paper explores the deflection of circular membranes when the membrane material is auxetic, i.e., when they possess negative Poisson's ratio and compared against conventional ones. Due to the multistage calculations involved in the exact method, a generic semi-empirical model is proposed to facilitate convenient and direct computation of the membrane deflection as a function of the radial distance; additionally, a specific semi-empirical model is given to provide a more accurate maximum deflection. Comparison of deflection distributions verifies the validity of the semi-empirical model vis-à-vis the exact model. The deflection of circular membrane increases with the diminishing effect as the Poisson's ratio of the membrane material becomes more negative.

References

References
1.
Popereka
,
M. Y. A.
, and
Balagurov
,
V. G.
,
1969
, “
Ferromagnetic Films Having a Negative Poisson Ratio
,”
Fiz. Tverd. Tela
,
11
(
12
), pp.
3507
3513
.
2.
Milstein
,
F.
, and
Huang
,
K.
,
1979
, “
Existence of a Negative Poisson Ratio in FCC Crystals
,”
Phys. Rev. B
,
19
(
4
), pp.
2030
2033
.
3.
Lakes
,
R. S.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
4.
Lakes
,
R. S.
,
1987
, “
Negative Poisson's Ratio Materials
,”
Science
,
238
(
4826
), p.
551
.
5.
Wojciechowski
,
K. W.
,
1987
, “
Constant Thermodynamic Tension Monte-Carlo Studies of Elastic Properties of a Two-Dimensional System of Hard Cyclic Hexamers
,”
Mol. Phys.
,
61
(
5
), pp.
1247
1258
.
6.
Wojciechowski
,
K. W.
,
1989
, “
Two-Dimensional Isotropic System With a Negative Poisson Ratio
,”
Phys. Lett. A
,
137
(
1–2
), pp.
60
64
.
7.
Wojciechowski
,
K. W.
, and
Branka
,
A. C.
,
1989
, “
Negative Poisson's Ratio in Isotropic Solids
,”
Phys. Rev. A
,
40
(
12
), pp.
7222
7225
.
8.
Caddock
,
B. D.
, and
Evans
,
K. E.
,
1989
, “
Microporous Materials With Negative Poisson's Ratios—I: Microstructure and Mechanical Properties
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1877
1882
.
9.
Evans
,
K. E.
, and
Caddock
,
B. D.
,
1989
, “
Microporous Materials With Negative Poisson's Ratios—II: Mechanisms and Interpretation
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1883
1887
.
10.
Choi
,
J. B.
, and
Lakes
,
R. S.
,
1991
, “
Design of a Fastener Based on Negative Poisson's Ratio Foam
,”
Cell. Polym.
,
10
(
3
), pp.
205
212
.
11.
Caddock
,
B. D.
, and
Evans
,
K. E.
,
1995
, “
Negative Poisson Ratios and Strain-Dependent Mechanical Properties in Arterial Prostheses
,”
Biomaterials
,
16
(
14
), pp.
1109
1115
.
12.
Karnessis
,
N.
, and
Burriesci
,
G.
,
2013
, “
Uniaxial and Buckling Mechanical Response of Auxetic Cellular Tubes
,”
Smart Mater. Struct.
,
22
(
8
), p.
084008
.
13.
Martz
,
E. O.
,
Lakes
,
R. S.
,
Goel
,
V. K.
, and
Park
,
J. B.
,
2005
, “
Design of an Artificial Intervertebral Disc Exhibiting a Negative Poisson's Ratio
,”
Cell. Polym.
,
24
(
3
), pp.
127
138
.
14.
Dolla
,
W. J. S.
,
Fricke
,
B. A.
, and
Becker
,
B. R.
,
2007
, “
Structural and Drug Diffusion Models of Conventional and Auxetic Drug-Eluting Stents
,”
ASME J. Med. Devices
,
1
(
1
), pp.
47
55
.
15.
Scarpa
,
F.
,
2008
, “
Auxetic Materials for Bioprostheses
,”
IEEE Signal Process. Mag.
,
25
(
5
), pp.
125
126
.
16.
Lakes
,
R. S.
, and
Lowe
,
A.
,
2000
, “
Negative Poisson's Ratio Foam as Seat Cushion Material
,”
Cell. Polym.
,
19
(
3
), pp.
157
167
.
17.
Wang
,
Y. C.
, and
Lakes
,
R. S.
,
2002
, “
Analytical Parametric Analysis of the Contact Problem of Human Buttocks and Negative Poisson's Ratio Foam Cushions
,”
Int. J. Solids Struct.
,
39
(
18
), pp.
4825
4838
.
18.
Alderson
,
A.
,
Rasburn
,
J.
,
Ameer-Bag
,
S.
,
Mullarkey
,
P. G.
,
Perrie
,
W.
, and
Evans
,
K. E.
,
2000
, “
An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity or De-Fouling Properties
,”
Ind. Eng. Chem. Res.
,
39
(
3
), pp.
654
655
.
19.
Alderson
,
A.
,
Davies
,
P. J.
,
Evans
,
K. E.
,
Alderson
,
K. L.
, and
Grima
,
J. N.
,
2005
, “
Modelling of the Mechanical and Mass Transport Properties of Auxetic Molecular Sieves: An Idealised Inorganic (Zeolitic) Host-Guest System
,”
Mol. Simul.
,
31
(
13
), pp.
889
896
.
20.
Alderson
,
A.
,
Davies
,
P. J.
,
Williams
,
M. R.
,
Evans
,
K. E.
,
Alderson
,
K. L.
, and
Grima
,
J. N.
,
2005
, “
Modelling of the Mechanical and Mass Transport Properties of Auxetic Molecular Sieves: An Idealised Organic (Polymeric Honeycomb) Host-Guest System
,”
Mol. Simul.
,
31
(
13
), pp.
897
905
.
21.
Lim
,
T. C.
, and
Acharya
,
R. U.
,
2010
, “
Performance Evaluation of Auxetic Molecular Sieves With Re-Entrant Structures
,”
J. Biomed. Nanotechnol.
,
6
(
6
), pp.
718
724
.
22.
Scarpa
,
F.
,
Giacomin
,
J.
,
Zhang
,
Y.
, and
Pastorino
,
P.
,
2005
, “
Mechanical Performance of Auxetic Polyurethane Foam for Antivibration Glove Applications
,”
Cell. Polym.
,
24
(
5
), pp.
253
268
.
23.
Alderson
,
A.
, and
Alderson
,
K.
,
2005
, “
Expanding Materials and Application: Exploiting Auxetic Textiles
,”
Tech. Text. Int.
,
14
(
6
), pp.
29
34
.
24.
Ge
,
Z.
,
Hu
,
H.
, and
Liu
,
Y.
,
2013
, “
A Finite Element Analysis of a 3D Auxetic Textile Structure for Composite Reinforcement
,”
Smart Mater. Struct.
,
22
(
8
), p.
084005
.
25.
Park
,
K. O.
,
Choi
,
J. B.
,
Lee
,
S. J.
,
Choi
,
H. H.
, and
Kim
,
J. K.
,
2005
, “
Polyurethane Foam With Negative Poisson's Ratio for Diabetic Shoe
,”
Key Eng. Mater.
,
288–289
, pp.
677
680
.
26.
Whitty
,
J. P. M.
,
Henderson
,
B.
,
Myler
,
P.
, and
Chirwa
,
C.
,
2007
, “
Crash Performance of Cellular Foams With Reduced Relative Density—Part 2: Rib Deletion
,”
Int. J. Crashworthiness
,
12
(
6
), pp.
689
698
.
27.
Park
,
K. O.
,
Choi
,
J. B.
,
Park
,
J. C.
,
Park
,
D. J.
, and
Kim
,
J. K.
,
2007
, “
An Improvement in Shock Absorbing Behavior of Polyurethane Foam With a Negative Poisson Effect
,”
Key Eng. Mater.
,
342
, pp.
845
848
.
28.
Bianchi
,
M. M.
, and
Scarpa
,
F.
,
2013
, “
Vibration Transmissibility and Damping Behaviour for Auxetic and Conventional Foams Under Linear and Nonlinear Regimes
,”
Smart Mater. Struct.
,
22
(
8
), p.
084010
.
29.
Ma
,
Y.
,
Scarpa
,
F.
,
Zhang
,
D.
,
Zhu
,
B.
,
Chen
,
L.
, and
Hong
,
J.
,
2013
, “
A Nonlinear Auxetic Structural Vibration Damper With Metal Rubber Particles
,”
Smart Mater. Struct.
,
22
(
8
), p.
084012
.
30.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
J. Aerosp. Eng.
,
221
(
4
), pp.
565
575
.
31.
Agnese
,
F.
,
Remillat
,
C.
,
Scarpa
,
F.
, and
Payne
,
C.
,
2015
, “
Composite Chiral Shear Vibration Damper
,”
Compos. Struct.
,
132
, pp.
215
225
.
32.
Airoldi
,
A.
,
Bettini
,
P.
,
Panichelli
,
P.
,
Oktem
,
M. F.
, and
Sala
,
G.
,
2015
, “
Chiral Topologies for Composites Morphing Structures—Part I: Development of a Chiral Rib for Deformable Airfoils
,”
Phys. Status Solidi B
,
252
(
7
), pp.
1435
1445
.
33.
Lim
,
T. C.
,
2015
, “
Longitudinal Wave Velocity in Auxetic Rods
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), p.
024502
.
34.
Lim
,
T. C.
,
2015
, “
Shear Deformation in Beams With Negative Poisson's Ratio
,”
J. Mater.: Des. Appl.
,
229
(
6
), pp.
447
454
.
35.
Lim
,
T. C.
,
2014
, “
Buckling and Vibration of Circular Auxetic Plates
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
021007
.
36.
Lim
,
T. C.
,
2014
, “
Shear Deformation in Rectangular Auxetic Plates
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
031007
.
37.
Lim
,
T. C.
,
2016
, “
Bending Stresses in Triangular Auxetic Plates
,”
ASME J. Eng. Mater. Technol.
,
138
(
1
), p.
014501
.
38.
Hencky
,
H.
,
1915
, “
On the Stress State in Circular Plates With Vanishing Bending Stiffness
,”
Z. Math. Phys.
,
63
, pp.
311
317
.
39.
Campbell
,
J. D.
,
1956
, “
On the Theory of Initial Tensioned Circular Membranes Subjected to Uniform Pressure
,”
Q. J. Mech. Appl. Math.
,
9
(
1
), pp.
84
93
.
40.
Fichter
,
W. B.
,
1997
, “
Some Solutions for the Large Deflections of Uniformly Loaded Circular Membranes
,”
NASA Technical Paper No. 3658
.
41.
Fung
,
Y. C.
,
1965
,
Foundations of Solid Mechanics
,
Prentice-Hall
,
Upper Saddle River, NJ
.
42.
Ting
,
T. C. T.
, and
Chen
,
T.
,
2005
, “
Poisson's Ratio for Anisotropic Elastic Materials Can Have No Bounds
,”
Q. J. Mech. Appl. Math.
,
58
(
1
), pp.
73
82
.
43.
Ting
,
T. C. T.
, and
Barnett
,
D. M.
,
2005
, “
Negative Poisson's Ratios in Anisotropic Linear Elastic Media
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
929
931
.
44.
Lim
,
T. C.
,
2015
,
Auxetic Materials and Structures
,
Springer
,
Singapore
.
You do not currently have access to this content.