A new peridynamic (PD) formulation is developed for cubic polycrystalline materials. The new approach can be a good alternative to traditional techniques such as finite element method (FEM) and boundary element method (BEM). The formulation is validated by considering a polycrystal subjected to tension-loading condition and comparing the displacement field obtained from both PDs and FEM. Both static and dynamic loading conditions for initially damaged and undamaged structures are considered and the results of plane stress and plane strain configurations are compared. Finally, the effect of grain boundary strength, grain size, fracture toughness, and grain orientation on time-to-failure, crack speed, fracture behavior, and fracture morphology are investigated and the expected transgranular and intergranular failure modes are successfully captured. To the best of the authors' knowledge, this is the first time that a PD material model for cubic crystals is given in detail.

References

References
1.
Benedetti
,
I.
, and
Aliabadi
,
M. H.
,
2013
, “
A Three-Dimensional Cohesive-Frictional Grain-Boundary Micromechanical Model for Intergranular Degradation and Failure in Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
,
265
, pp.
36
62
.
2.
Herbig
,
M.
,
King
,
A.
,
Reischig
,
P.
,
Proudhon
,
H.
,
Lauridsen
,
E. M.
,
Marrow
,
J.
,
Buffire
,
J. Y.
, and
Ludwig
,
W.
,
2011
, “
3D Growth of a Short Fatigue Crack Within a Polycrystalline Microstructure Studied Using Combined Diffraction and Phase-Contrast X-Ray Tomography
,”
Acta Mater.
,
59
(
2
), pp.
590
601
.
3.
Ludwig
,
W.
,
King
,
A.
,
Reischig
,
P.
,
Herbig
,
M.
,
Lauridsen
,
E. M.
,
Schmidt
,
S.
,
Proudhon
,
H.
,
Forest
,
S.
,
Cloetens
,
P.
,
Du Roscoat
,
S. R.
,
Buffière
,
J. Y.
,
Marrow
,
T. J.
, and
Poulsen
,
H. F.
,
2009
, “
New Opportunities for 3D Materials Science of Polycrystalline Materials at the Micrometre Lengthscale by Combined Use of X-Ray Diffraction and X-Ray Imaging
,”
Mater. Sci. Eng. A
,
524
(1–2), pp.
69
76
.
4.
Groeber
,
M. A.
,
Haley
,
B. K.
,
Uchic
,
M. D.
,
Dimiduk
,
D. M.
, and
Ghosh
,
S.
,
2006
, “
3D Reconstruction and Characterization of Polycrystalline Microstructures Using a FIB-SEM System
,”
Mater. Charact.
,
57
(4–5), pp.
259
273
.
5.
Paggi
,
M.
, and
Wriggers
,
P.
,
2012
, “
Stiffness and Strength of Hierarchical Polycrystalline Materials With Imperfect Interfaces
,”
J. Mech. Phys. Solids
,
60
(
4
), pp.
557
572
.
6.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
,
2003
, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part I: Theory and Numerical Implementation
,”
Mech. Mater.
,
35
(
3–6
), pp.
333
364
.
7.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
,
2003
, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part II: Numerical Examples
,”
Mech. Mater.
,
35
(3–6), pp.
365
394
.
8.
Zhai
,
J.
,
Tomar
,
V.
, and
Zhou
,
M.
,
2004
, “
Micromechanical Simulation of Dynamic Fracture Using the Cohesive Finite Element Method
,”
ASME J. Eng. Mater. Technol.
,
126
(
2
), pp.
179
191
.
9.
Sukumar
,
N.
,
Srolovitz
,
D. J.
,
Baker
,
T. J.
, and
Prévost
,
J. H.
,
2003
, “
Brittle Fracture in Polycrystalline Microstructures With the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
56
(
14
), pp.
2015
2037
.
10.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2007
, “
Multi-Scale Boundary Element Modelling of Material Degradation and Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
7
), pp.
1310
1329
.
11.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2007
, “
A Boundary Cohesive Grain Element Formulation for Modelling Intergranular Microfracture in Polycrystalline Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
69
(
8
), pp.
1590
1626
.
12.
Benedetti
,
I.
, and
Aliabadi
,
M. H.
,
2012
, “
A Grain Boundary Formulation for the Analysis of Three-Dimensional Polycrystalline Microstructures
,”
Key Eng. Mater.
,
525–526
, pp.
1
4
.
13.
Benedetti
,
I.
, and
Aliabadi
,
M. H.
,
2013
, “
A Three-Dimensional Grain Boundary Formulation for Microstructural Modeling of Polycrystalline Materials
,”
Comput. Mater. Sci.
,
67
, pp.
249
260
.
14.
Crocker
,
A. G.
,
Flewitt
,
P. E. J.
, and
Smith
,
G. E.
,
2005
, “
Computational Modelling of Fracture in Polycrystalline Materials
,”
Int. Mater. Rev.
,
50
(
2
), pp.
99
125
.
15.
Madenci
,
E.
, and
Oterkus
,
E.
,
2014
,
Peridynamic Theory and Its Applications
, Springer, New York.
16.
Zi
,
G.
,
Rabczuk
,
T.
, and
Wall
,
W.
,
2007
, “
Extended Meshfree Methods Without Branch Enrichment for Cohesive Cracks
,”
Comput. Mech.
,
40
(
2
), pp.
367
382
.
17.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics—Fundamentals and Applications
,
3rd ed.
,
Taylor & Francis
,
Boca Raton, FL
.
18.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
19.
Askari
,
E.
,
Bobaru
,
F.
,
Lehoucq
,
R. B.
,
Parks
,
M. L.
,
Silling
,
S. A.
, and
Weckner
,
O.
,
2008
, “
Peridynamics for Multiscale Materials Modeling
,”
J. Phys. Conf. Ser.
,
125
(1), p.
012078
.
20.
Ghajari
,
M.
,
Iannucci
,
L.
, and
Curtis
,
P.
,
2014
, “
A Peridynamic Material Model for the Analysis of Dynamic Crack Propagation in Orthotropic Media
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
431
452
.
21.
Seleson
,
P.
, and
Parks
,
M.
,
2011
, “
On the Role of the Influence Function in the Peridynamic Theory
,”
Int. J. Multiscale Comput. Eng.
,
9
(
6
), pp.
689
706
.
22.
Oterkus
,
E.
, and
Madenci
,
E.
,
2012
, “
Peridynamic Analysis of Fiber-Reinforced Composite Materials
,”
J. Mech. Mater. Struct.
,
7
(
1
),
2012
.
23.
Hirose
,
Y.
, and
Mura
,
T.
,
1984
, “
Nucleation Mechanism of Stress Corrosion Cracking From Notches
,”
Eng. Fract. Mech.
,
19
(
2
), pp.
317
329
.
24.
Rimoli
,
J. J.
, and
Ortiz
,
M.
,
2010
, “
A Three-Dimensional Multiscale Model of Intergranular Hydrogen-Assisted Cracking
,”
Philos. Mag.
,
90
(
21
), pp.
2939
2963, 2010
.
25.
Hosford
,
W. F.
,
1993
,
The Mechanics of Crystals and Textured Polycrystals
,
Oxford University Press
,
New York
.
26.
Rimoli
,
J. J.
,
2009
, “
A Computational Model for Intergranular Stress Corrosion Cracking
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.
27.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
,
2nd ed.
,
Cambridge University Press
, West Nyack, NY.
28.
Shum
,
D. K. M.
, and
Hutchinson
,
J. W.
,
1990
, “
On Toughening by Microcracks
,”
Mech. Mater.
,
9
(
2
), pp.
83
91
.
29.
Hutchinson
,
J. W.
,
1989
, “
Mechanisms of Toughening in Ceramics
,”
Theoretical and Applied Mechanics
, North Holland, Amsterdam, The Netherlands, pp.
139
144
.
30.
Ruhle
,
M.
,
Evans
,
A. G.
,
McMeeking
,
R. M.
,
Charalambides
,
P. G.
, and
Hutchinson
,
J. W.
,
1987
, “
Microcrack Toughening in Alumina/Zirconia
,”
Acta Met.
,
35
(
11
), pp.
2701
2710
.
31.
Toi
,
Y.
, and
Atluri
,
S. N.
,
1990
, “
Finite Element Analysis of Static and Dynamic Fracture of Brittle Microcracking Solids. Part 1: Formulation and Simple Numerical Examples
,”
Int. J. Plast.
,
6
, pp.
166
188
.
32.
Johnson
,
E.
,
2001
, “
Simulations of Microcracking in the Process Region of Ceramics With a Cell Model
,”
Int. J. Fract.
,
111
(
1978
), pp.
361
380
.
33.
Wang
,
H.
,
Liu
,
Z.
,
Xu
,
D.
,
Zeng
,
Q.
, and
Zhuang
,
Z.
,
2016
, “
Extended Finite Element Method Analysis for Shielding and Amplification Effect of a Main Crack Interacted With a Group A of Nearby Parallel Microcracks
,”
Int. J. Damage Mech.
,
25
(
1
), pp.
4
25
.
34.
Chandar
,
K. R.
, and
Knauss
,
W. G.
,
1982
, “
Dynamic Crack-Tip Stresses Under Stress Wave Loading—A Comparison of Theory and Experiment
,”
Int. J. Fract.
,
20
(
3
), pp.
209
222
.
35.
Bobaru
,
F.
, and
Hu
,
W.
,
2012
, “
The Meaning, Selection, and Use of the Peridynamic Horizon and Its Relation to Crack Branching in Brittle Materials
,”
Int. J. Fract.
,
176
(
2
), pp.
215
222
.
36.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2010
, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics
,”
Int. J. Fract.
,
162
(1), pp.
229
244
.
37.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2011
, “
Characteristics of Dynamic Brittle Fracture Captured With Peridynamics
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
1156
1168
.
38.
Pouillier
,
E.
,
Gourgues
,
A. F.
,
Tanguy
,
D.
, and
Busso
,
E. P.
,
2012
, “
A Study of Intergranular Fracture in an Aluminium Alloy Due to Hydrogen Embrittlement
,”
Int. J. Plast.
,
34
, pp.
139
153
.
39.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(17–18), pp.
1526
1535
.
You do not currently have access to this content.