Simulation plays a critical role in the development and evaluation of critical components that are regularly subjected to mechanical loads at elevated temperatures. The cost, applicability, and accuracy of either numerical or analytical simulations are largely dependent on the material model chosen for the application. A noninteraction (NI) model derived from individual elastic, plastic, and creep components is developed in this study. The candidate material under examination for this application is 2.25Cr–1Mo, a low-alloy ferritic steel commonly used in chemical processing, nuclear reactors, pressure vessels, and power generation. Data acquired from prior research over a range of temperatures up to 650 °C are used to calibrate the creep and plastic components described using constitutive models generally native to general-purpose fea. Traditional methods invoked to generate constitutive modeling coefficients employ numerical fittings of hysteresis data, which result in values that are neither repeatable nor display reasonable temperature dependence. By extrapolating simplifications commonly used for reduced-order model approximations, an extension utilizing only the cyclic Ramberg–Osgood (RO) coefficients has been developed. This method is used to identify the nonlinear kinematic hardening (NLKH) constants needed at each temperature. Single-element simulations are conducted to verify the accuracy of the approach. Results are compared with isothermal and nonisothermal literature data.

References

References
1.
Bouchenot
,
T.
,
Gordon
,
A. P.
,
Shinde
,
S.
, and
Gravett
,
P.
,
2014
, “
An Analytical Stress-Strain Hysteresis Model for a Directionally-Solidified Superalloy Under Thermomechanical Fatigue
,”
ASME
Paper No. GT2014-27329.
2.
Bouchenot
,
T.
,
Gordon
,
A. P.
,
Shinde
,
S.
, and
Gravett
,
P.
,
2014
, “
Approach for Stabilized Peak/Valley Stress Modeling of Non-Isothermal Fatigue of a DS Ni-Base Superalloy
,”
Mater. Perform. Charact.
,
3
(
2
), pp.
16
43
.
3.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” Patent No. NACA-TN-902.
4.
Masing
,
G.
,
1926
, “
Eigenspannungen und Verfestigung beim Messing (Self Stretching and Hardening for Brass)
,”
Second International Congress for Applied Mechanics
, Zurich, Switzerland, Sept. 12–17, pp.
332
335
.
5.
Besseling
,
J. F.
,
1958
, “
A Theory of Elastic, Plastic and Creep Deformations of an Initially Isotropic Material
,”
J. Appl. Mech.
,
25
, pp.
529
536
.
6.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” Central Electricity Generating Board, Berkeley, UK, CEGB Report RD/B/N 731.
7.
Chaboche
,
J.-L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.
8.
Chaboche
,
J.-L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.
9.
Gong
,
Y. P.
,
Hyde
,
C. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2010
, “
Determination of Material Properties in the Chaboche Unified Viscoplasticity Model
,”
Inst. Mech. Eng., Part L
,
224
, pp.
19
29
.
10.
Rahman
,
S. M.
,
Hassan
,
T.
, and
Ranjithan
,
S. R.
,
2005
, “
Automated Parameter Determination of Advanced Constitutive Models
,”
ASME
Paper No. PVP2005-71634.
11.
Norton
,
F. H.
,
1929
,
The Creep of Steel at High Temperature
,
McGraw-Hill
,
New York
.
12.
Garofalo
,
F.
,
1965
,
Fundamentals of Creep and Creep Rupture in Metals
,
MacMillan
,
New York
.
13.
Rieiro
,
I.
,
Carsi
,
M.
, and
Ruano
,
O. A.
,
2009
, “
New Numerical Method for the Fit of Garofalo Equation and Its Application for Predicting Hot Workability of a (V-N) Microalloyed Steel
,”
Mater. Sci. Technol.
,
25
(
8
), pp.
995
1002
.
14.
Yin
,
S.-N.
,
Kim
,
W.-G.
,
Jung
,
I.-H.
,
Kim
,
Y.-W.
, and
Kim
,
S.-J.
,
2008
,
Creep Curve Modeling to Generate the Isochronous Stress-Strain Curve of Type 316LN Stainless Steel
,
Trans Tech Publications Ltd.
,
Stafa-Zuerich, Switzerland
, pp.
705
708
.
15.
May
,
D. L.
,
Gordon
,
A. P.
, and
Segletes
,
D. S.
,
2013
, “
The Application of the Norton-Bailey Law for Creep Prediction Through Power Law Regression
,”
ASME
Paper No. GT2013-96008.
16.
ASTM
,
2013
, “
Standard Specification for Pressure Vessel Plates, Alloy Steel, Quenched-and-Tempered, Chromium-Molybdenum, and Chromium-Molybdenum-Vanadium
,” ASTM Book of Standards Volume 01.04, ASTM International, West Conshohocken, PA, Standard No. ASTM A542/A542M-13.
17.
Tian
,
Y.
,
Yu
,
D.
,
Zhao
,
Z.
,
Chen
,
G.
, and
Chen
,
X.
,
2016
, “
Low Cycle Fatigue and Creep–Fatigue Interaction Behaviour of 2.25Cr1MoV Steel at Elevated Temperature
,”
Mater. High Temp.
,
33
(
1
), pp.
75
84
.
18.
N.R.I.F. Metals
,
1989
, “
Data Sheets on the Elevated-Temperature, Time-Dependent Low-Cycle Fatigue Properties of SCMV 4 (2.25Cr-1Mo) Steel Plates for Pressure Vessels #62
,” NRIM Fatigue Data Sheet, NRIM, Tokyo, Japan.
19.
Parker
,
J. D.
,
1985
, “
Prediction of Creep Deformation and Failure for 1/2 Cr-1/2 Mo-1/4 V and 2-1/4 Cr-1 Mo Steels
,”
ASME J. Pressure Vessel Technol.
,
107
(
3
), pp.
279
284
.
20.
N.I.F.M. Science
,
2004
, “
Data Sheets on Long-Term, High-Temperature Low-Cycle Fatigue Properties of SCMV 4 (2.25Cr-1Mo) Steel Plate for Boilers and Pressure Vessels #94
,” NIMS Fatigue Data Sheet, NIMS, Tsukuba, Japan.
21.
Polak
,
J.
,
Helesic
,
J.
, and
Klesnil
,
M.
,
1987
, “
Effect of Elevated Temperatures on the Low Cycle Fatigue of 2. 25Cr-1Mo Steel—Part 1: Constant Amplitude Straining
,”
Low Cycle Fatigue: A Symposium
, ASTM Special Technical Publication 942, Sept. 30, 1987, ASTM, Bolton Landing, NY, pp. 43–57.
22.
N.I.F.M. Science
,
2003
, “
Data Sheets on the Elevated-Temperature Properties of Quenched and Tempered 2.25Cr-1Mo Steel Plates for Pressure Vessels (ASTM A542/A542M) #36B
,” NIMS Creep Data Sheet, NIMS, Tsukuba, Japan.
23.
Iwasaki
,
Y.
,
Hiroe
,
T.
, and
Igari
,
T.
,
1987
, “
Application of the Viscoplasticity Theory to the Inelastic Analysis at Elevated Temperature (On the Deformation and Lifetime Analysis Under Time-Varying Temperature)
,”
Trans. Jpn. Soc. Mech. Eng., Part A
,
53
(
493
), pp.
1838
1843
.
24.
Dowling
,
N. E.
,
1999
,
Mechanical Behavior of Materials
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Gordon
,
A. P.
,
2012
,
Dictionary of Experiments of Mechanics of Materials
,
Creative Printing and Publishing
,
Sanford, FL
.
26.
McEvily
,
A. J.
,
1983
, “
On the Quantitative Analysis of Fatigue Crack Propagation
,”
J.
Lankford
,
D. L.
Davidson
,
W. L.
Morris
, and
R. P.
Wei
, eds.,
Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage
,
ASTM
,
West Conshohocken, PA
.
27.
Jordan
,
E. H.
, and
Meyers
,
G. J.
,
1989
, “
Fracture-Mechanics Applied to Elevated-Temperature Crack-Growth
,”
J. Eng. Mater. Technol.
,
111
(
3
), pp.
306
313
.
28.
Kalnins
,
A.
,
Rudolph
,
J.
, and
Willuweit
,
A.
,
2013
, “
Using the Nonlinear Kinematic Hardening Material Model of Chaboche for Elastic-Plastic Ratcheting Analysis
,”
ASME
Paper. No. PVP2013-98150.
29.
Imaoka
,
S.
,
2008
, “Chaboche Nonlinear Kinematic Hardening Model,” ANSYS Release 12.0.1, http://ansys.net/collection/1105
30.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, NY
.
31.
Dos Reis Sobrinho
,
J. F.
, and
De Oliveira Bueno
,
L.
,
2014
, “
Hot Tensile and Creep Rupture Data Extrapolation on 2.25Cr-1Mo Steel Using the CDM Penny–Kachanov Methodology
,”
Mater. Res.
,
17
(
2
), pp.
518
526
.
You do not currently have access to this content.