A relatively low-temperature carbon nanotube (CNT) synthesis technique, graphitic structure by design (GSD), was utilized to grow CNTs over glass fibers. Composite laminates based on the hybrid CNTs–glass fibers were fabricated and examined for their electromagnetic interfering (EMI) shielding effectiveness (SE), in-plane and out-of-plane electrical conductivities and mechanical properties. Despite degrading the strength and strain-to-failure, improvements in the elastic modulus, electrical conductivities, and EMI SE of the glass fiber reinforced polymer (GFRP) composites were observed.

References

References
1.
Joo
,
J.
, and
Epstein
,
A.
,
1994
, “
Electromagnetic Radiation Shielding by Intrinsically Conducting Polymers
,”
Appl. Phys. Lett.
,
65
(
18
), pp.
2278
2280
.
2.
Schulz
,
R.
,
Plantz
,
V. C.
, and
Brush
,
D.
,
1968
, “
Low-Frequency Shielding Resonance
,”
IEEE Trans. Electromagn. Compat.
,
EMC10
(
1
), pp.
7
15
.
3.
Yasufuku
,
S.
,
1990
, “
Technical Progress of EMI Shielding Materials in Japan
,”
IEEE Electr. Insul. Mag.
,
6
(
6
), pp.
21
30
.
4.
Colaneri
,
N. F.
, and
Schacklette
,
L.
,
1992
, “
EMI Shielding Measurements of Conductive Polymer Blends
,”
IEEE Trans. Instrum. Meas.
,
41
(
2
), pp.
291
297
.
5.
Joo
,
J.
,
Oblakowski
,
Z.
,
Du
,
G.
,
Pouget
,
J. P.
,
Oh
,
E. J.
,
Wiesinger
,
J. M.
,
Min
,
Y.
,
Macdiarmid
,
A. G.
, and
Epstein
,
A. J.
,
1994
, “
Microwave Dielectric Response of Mesoscopic Metallic Regions and the Intrinsic Metallic State of Polyaniline
,”
Phys. Rev. B
,
49
(
4
), pp.
2977
2980
.
6.
Shui
,
X.
, and
Chung
,
D.
,
1997
, “
Nickel Filament Polymer-Matrix Composites With Low Surface Impedance and High Electromagnetic Interference Shielding Effectiveness
,”
J. Electron. Mater.
,
26
(
8
), pp.
928
934
.
7.
Shinagawa
,
S.
,
Kumagai
,
Y.
, and
Urabe
,
K.
,
1999
, “
Conductive Papers Containing Metallized Polyester Fibers for Electromagnetic Interference Shielding
,”
J. Porous Mater.
,
6
(
3
), pp.
185
190
.
8.
Huang
,
C. J.
, and
Chang
,
T. C.
,
2004
, “
Studies on the Electromagnetic Interference Shielding Effectiveness of Metallized PVAc‐AgNO3/PET Conductive Films
,”
J. Appl. Polym. Sci.
,
91
(
1
), pp.
270
273
.
9.
Manners
,
I.
,
2001
, “
Putting Metals Into Polymers
,”
Science
,
294
(
5547
), pp.
1664
1666
.
10.
Luo
,
X.
, and
Chung
,
D.
,
1999
, “
Electromagnetic Interference Shielding Using Continuous Carbon-Fiber Carbon-Matrix and Polymer-Matrix Composites
,”
Composites Part B
,
30
(
3
), pp.
227
231
.
11.
Chung
,
D.
,
2001
, “
Electromagnetic Interference Shielding Effectiveness of Carbon Materials
,”
Carbon
,
39
(
2
), pp.
279
285
.
12.
Kim
,
H.
,
Kim
,
K.
,
Lee
,
C.
,
Joo
,
J.
,
Cho
,
S.
,
Yoon
,
H.
,
Pejaković
,
D.
,
Yoo
,
J.
, and
Epstein
,
A.
,
2004
, “
Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst
,”
Appl. Phys. Lett.
,
84
(
4
), pp.
589
591
.
13.
Li
,
N.
,
Huang
,
Y.
,
Du
,
F.
,
He
,
X.
,
Lin
,
X.
,
Gao
,
H.
,
Ma
,
Y.
,
Li
,
F.
,
Chen
,
Y.
, and
Eklund
,
P. C.
,
2006
, “
Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites
,”
Nano Lett.
,
6
(
6
), pp.
1141
1145
.
14.
Park
,
S. H.
,
Thielemann
,
P.
,
Asbeck
,
P.
, and
Bandaru
,
P. R.
,
2009
, “
Enhanced Dielectric Constants and Shielding Effectiveness of, Uniformly Dispersed, Functionalized Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
94
(
24
), p.
243111
.
15.
Ma
,
P.-C.
,
Siddiqui
,
N. A.
,
Marom
,
G.
, and
Kim
,
J.-K.
,
2010
, “
Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review
,”
Composites Part A
,
41
(
10
), pp.
1345
1367
.
16.
Thostenson
,
E. T.
, and
Chou
,
T.-W.
,
2002
, “
Aligned Multi-Walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization
,”
J. Phys. D
,
35
(
16
), pp.
77
80
.
17.
Qian
,
H.
,
Greenhalgh
,
E. S.
,
Shaffer
,
M. S.
, and
Bismarck
,
A.
,
2010
, “
Carbon Nanotube-Based Hierarchical Composites: A Review
,”
J. Mater. Chem.
,
20
(
23
), pp.
4751
4762
.
18.
Khan
,
S.
, and
Kim
,
J.-K.
,
2011
, “
Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review
,”
Int. J. Aeronaut. Space. Sci.
,
12
(
2
), pp.
115
133
.
19.
Tehrani
,
M.
,
Boroujeni
,
A.
,
Hartman
,
T.
,
Haugh
,
T.
,
Case
,
S.
, and
Al-Haik
,
M.
,
2013
, “
Mechanical Characterization and Impact Damage Assessment of a Woven Carbon Fiber Reinforced Carbon Nanotube–Epoxy Composite
,”
Compos. Sci. Technol.
,
75
, pp.
42
48
.
20.
Gibson
,
R. F.
,
2010
, “
A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures
,”
Compos. Struct.
,
92
(
12
), pp.
2793
2810
.
21.
Jiménez-Suárez
,
A.
,
Campo
,
M.
,
Sánchez
,
M.
,
Romón
,
C.
, and
Ureña
,
A.
,
2012
, “
Dispersion of Carbon Nanofibres in a Low Viscosity Resin by Calendering Process to Manufacture Multiscale Composites by VARIM
,”
Composites Part B
,
43
(
8
), pp.
3104
3113
.
22.
Tehrani
,
M.
,
Safdari
,
M.
,
Boroujeni
,
A.
,
Razavi
,
Z.
,
Case
,
S.
,
Dahmen
,
K.
,
Garmestani
,
H.
, and
Al-Haik
,
M.
,
2013
, “
Hybrid Carbon Fiber/Carbon Nanotube Composites for Structural Damping Applications
,”
Nanotechnology
,
24
(
15
), p.
155704
.
23.
Advani
,
S. G.
, and
Fan
,
Z.
,
2007
, “
Dispersion, Bonding and Orientation of Carbon Nanotubes in Polymer Matrices
,”
Processing and Properties of Nanocomposites
,
World Scientific Publishing
,
Hackensack, NJ
, pp.
61
85
.
24.
Yamamoto
,
N.
, and
Wardl
,
B.
,
2008
, “
Electrical and Thermal Properties of Hybrid Woven Composites Reinforced With Aligned Carbon Nanotubes
,”
AIAA
Paper No. 2008-1857.
25.
Zhu
,
S.
,
Su
,
C.-H.
,
Lehoczky
,
S.
,
Muntele
,
I.
, and
Ila
,
D.
,
2003
, “
Carbon Nanotube Growth on Carbon Fibers
,”
Diamond Relat. Mater.
,
12
(
10
), pp.
1825
1828
.
26.
Sinnott
,
S. B.
, and
Andrews
,
R.
,
2001
, “
Carbon Nanotubes: Synthesis, Properties, and Applications
,”
Crit. Rev. Solid State Mater. Sci.
,
26
(
3
), pp.
145
249
.
27.
Luhrs
,
C. C.
,
Garcia
,
D.
,
Tehrani
,
M.
,
Al-Haik
,
M.
,
Taha
,
M. R.
, and
Phillips
,
J.
,
2009
, “
Generation of Carbon Nanofilaments on Carbon Fibers at 550 °C
,”
Carbon
,
47
(
13
), pp.
3071
3078
.
28.
Al-Haik
,
M.
,
Luhrs
,
C.
,
Reda Taha
,
M.
,
Roy
,
A.
,
Dai
,
L.
,
Phillips
,
J.
, and
Doorn
,
S.
,
2010
, “
Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites
,”
J. Nanotechnol.
,
2010
, p.
860178
.
29.
Boskovic
,
B.
,
Golovko
,
V.
,
Cantoro
,
M.
,
Kleinsorge
,
B.
,
Chuang
,
A.
,
Ducati
,
C.
,
Hofmann
,
S.
,
Robertson
,
J.
, and
Johnson
,
B.
,
2005
, “
Low Temperature Synthesis of Carbon Nanofibres on Carbon Fibre Matrices
,”
Carbon
,
43
(
13
), pp.
2643
2648
.
30.
Zhang
,
Q.
,
Liu
,
J.
,
Sager
,
R.
,
Dai
,
L.
, and
Baur
,
J.
,
2009
, “
Hierarchical Composites of Carbon Nanotubes on Carbon Fiber: Influence of Growth Condition on Fiber Tensile Properties
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
594
601
.
31.
Wang
,
B.-C.
,
Zhou
,
X.
, and
Ma
,
K.-M.
,
2013
, “
Fabrication and Properties of CNTs/Carbon Fabric Hybrid Multiscale Composites Processed Via Resin Transfer Molding Technique
,”
Composites Part B
,
46
, pp.
123
129
.
32.
Chen
,
X.
,
Saito
,
T.
,
Kusunoki
,
M.
, and
Motojima
,
S.
,
1999
, “
Three-Dimensional Vapor Growth Mechanism of Carbon Microcoils
,”
J. Mater. Res.
,
14
(
11
), pp.
4329
4336
.
33.
Veedu
,
V. P.
,
Cao
,
A.
,
Li
,
X.
,
Ma
,
K.
,
Soldano
,
C.
,
Kar
,
S.
,
Ajayan
,
P. M.
, and
Ghasemi-Nejhad
,
M. N.
,
2006
, “
Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests
,”
Nat. Mater.
,
5
(
6
), pp.
457
462
.
34.
Phillips
,
J.
,
Leseman
,
Z. C.
,
Cordaro
,
J.
,
Luhrs
,
C.
, and
Al-Haik
,
M.
,
2007
, “
Novel Graphitic Structures by Design
,”
ASME
Paper No. IMECE2007-42977.
35.
Tehrani
,
M.
,
Boroujeni
,
A. Y.
,
Luhrs
,
C.
,
Phillips
,
J.
, and
Al-Haik
,
M. S.
,
2014
, “
Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement
,”
Materials
,
7
(
6
), pp.
4182
4195
.
36.
Boroujeni
,
A.
,
Tehrani
,
M.
,
Nelson
,
A.
, and
Al-Haik
,
M.
,
2014
, “
Hybrid Carbon Nanotube-Carbon Fiber Composites With Improved In-Plane Mechanical Properties
,”
Composites Part B
,
66
, pp.
475
483
.
37.
Boroujeni
,
A.
,
Tehrani
,
M.
,
Nelson
,
A.
, and
Al-Haik
,
M.
,
2015
, “
Effect of Carbon Nanotubes Growth Topology on the Mechanical Behavior of Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites
,”
Polym. Compos.
(in press).
38.
Al-Haik
,
M.
,
Garmestani
,
H.
, and
Savran
,
A.
,
2004
, “
Explicit and Implicit Viscoplastic Models for Polymeric Composite
,”
Int. J. Plast.
,
20
(
10
), pp.
1875
1907
.
39.
Al-Haik
,
M.
,
Hussaini
,
M.
, and
Garmestani
,
H.
,
2006
, “
Prediction of Nonlinear Viscoelastic Behavior of Polymeric Composites Using an Artificial Neural Network
,”
Int. J. Plast.
,
22
(
7
), pp.
1367
1392
.
40.
Garmestani
,
H.
,
Al-Haik
,
M. S.
,
Dahmen
,
K.
,
Tannenbaum
,
R.
,
Li
,
D.
,
Sablin
,
S. S.
, and
Hussaini
,
M. Y.
,
2003
, “
Polymer‐Mediated Alignment of Carbon Nanotubes Under High Magnetic Fields
,”
Adv. Mater.
,
15
(
22
), pp.
1918
1921
.
41.
Tehrani
,
M.
,
Safdari
,
M.
, and
Al-Haik
,
M.
,
2011
, “
Nanocharacterization of Creep Behavior of Multiwall Carbon Nanotubes/Epoxy Nanocomposite
,”
Int. J. Plast.
,
27
(
6
), pp.
887
901
.
42.
Keszler
,
A.
,
Nemes
,
L.
,
Ahmad
,
S.
, and
Fang
,
X.
,
2004
, “
Characterization of Carbon Nanotube Materials by Raman Spectroscopy and Microscopy: A Case Study of Multiwalled and Singlewalled Samples
,”
J. Optoelectron. Adv. Mater.
,
6
(
4
), pp.
1269
1274
.
You do not currently have access to this content.