In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (alloy 617) and Haynes 230 (alloy 230). Both alloys are considered to be the primary candidate structural materials for very high-temperature reactors (VHTRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900 °C for the effective stress range of 15–35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes was observed in all the studied conditions. Tertiary creep was found to be dominant over the entire creep lives of both alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries were found to be the main reasons for the limited secondary regime and were also found to be the major causes of creep fracture. The creep curves computed using the adjusted creep equation of the form ε=Aσcosh1(1+rt)+Pσntm agree well with the experimental results for both alloys at the temperatures of 850–950 °C.

References

References
1.
Ren
,
W. J.
, and
Swindeman
,
R.
,
2009
, “
A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers
,”
ASME J. Pressure Vessel Technol.
,
131
(
4
), p.
044002
.
2.
Ren
,
W. J.
, and
Swimdeman
,
R.
,
2009
, “
A Review Paper on Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
024002
.
3.
Hosier
,
J. C.
, and
Tillack
,
D. J.
,
1972
, “
Inconel Alloy 617—New High-Temperature Alloy
,”
Met. Eng. Q.
,
12
(
3
), pp.
51
55
.
4.
Natesan
,
K.
,
Purohit
,
A.
, and
Tam
,
S. W.
,
2003
, “
Materials Behavior in HTGR Environments
,” Argonne National Laboratory, U.S. Department of Energy, Lemont, IL, Report No. NUREG_CR6824.
5.
Tawancy
,
H. M.
,
Klarstrom
,
D. L.
, and
Rothman
,
M. F.
,
1984
, “
Development of a New Nickel-Base Superalloy
,”
JOM
,
36
(
9
), pp.
58
62
.
6.
Schubert
,
F.
,
Bruch
,
U.
,
Cook
,
R.
,
Diehl
,
H.
,
Ennis
,
P. J.
,
Jakobeit
,
W.
,
Penkalla
,
H. J.
,
Teheesen
,
E.
, and
Ullrich
,
G.
,
1984
, “
Creep-Rupture Behavior of Candidate Materials for Nuclear Process Heat Applications
,”
Nucl. Technol.
,
66
(
2
), pp.
227
240
.
7.
Sharma
,
S. K.
,
Ko
,
G. D.
,
Li
,
F. X.
, and
Kang
,
K. J.
,
2008
, “
Oxidation and Creep Failure of Alloy 617 Foils at High Temperature
,”
J. Nucl. Mater.
,
378
(
2
), pp.
144
152
.
8.
Roy
,
A. K.
,
Hasan
,
M. H.
, and
Pal
,
J.
,
2009
, “
Creep Deformation of Alloys 617 and 276 at 750–950 °C
,”
Mater. Sci. Eng. A Struct. Mater.
,
520
(
1–2
), pp.
184
188
.
9.
Schneider
,
K.
,
Hartnagel
,
W.
,
Schepp
,
P.
, and
Ilschner
,
B.
,
1984
, “
Creep-Behavior of Materials for High-Temperature Reactor Application
,”
Nucl. Technol.
,
66
(
2
), pp.
289
295
.
10.
Sharma
,
S. K.
,
Jang
,
C.
, and
Kang
,
K. J.
,
2009
, “
Effect of Thermo-Mechanical Processing on Microstructure and Creep Properties of the Foils of Alloy 617
,”
J. Nucl. Mater.
,
389
(
3
), pp.
420
426
.
11.
Lillo
,
T.
,
Cole
,
J.
,
Frary
,
M.
, and
Schlegel
,
S.
,
2009
, “
Influence of Grain Boundary Character on Creep Void Formation in Alloy 617
,”
Metall. Mater. Trans. A
,
40
(
12
), pp.
2803
2811
.
12.
Schlegel
,
S.
,
Hopkins
,
S.
,
Young
,
E.
,
Cole
,
J.
,
Lillo
,
T.
, and
Frary
,
M.
,
2009
, “
Precipitate Redistribution During Creep of Alloy 617
,”
Metall. Mater. Trans. A
,
40A
(
12
), pp.
2812
2823
.
13.
Chomette
,
S.
,
Gentzbittel
,
J. M.
, and
Viguier
,
B.
,
2010
, “
Creep Behaviour of as Received, Aged and Cold Worked INCONEL 617 at 850 °C and 950 °C
,”
J. Nucl. Mater.
,
399
(
2–3
), pp.
266
274
.
14.
Kim
,
W. G.
,
Yin
,
S. N.
,
Lee
,
G. G.
,
Kim
,
Y. W.
, and
Kim
,
S. J.
,
2010
, “
Creep Oxidation Behaviour and Creep Strength Prediction for Alloy 617
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
289
295
.
15.
Cabet
,
C.
,
Carroll
,
L.
, and
Wright
,
R.
,
2013
, “
Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061401
.
16.
Carroll
,
L. J.
,
Cabet
,
C.
,
Carroll
,
M. C.
, and
Wright
,
R. N.
,
2013
, “
The Development of Microstructural Damage During High Temperature Creep-Fatigue of a Nickel Alloy
,”
Int. J. Fatigue
,
47
, pp.
115
125
.
17.
Carroll
,
M. C.
, and
Carroll
,
L. J.
,
2013
, “
Developing Dislocation Subgrain Structures and Cyclic Softening During High-Temperature Creep-Fatigue of a Nickel Alloy
,”
Metall. Mater. Trans. A
,
44
(
8
), pp.
3592
3607
.
18.
Krishna
,
R.
,
Hainsworth
,
S. V.
,
Gill
,
S. P. A.
,
Strang
,
A.
, and
Atkinson
,
H. V.
,
2013
, “
Topologically Close-Packed μ Phase Precipitation in Creep-Exposed Inconel 617 Alloy
,”
Metall. Mater. Trans. A
,
44
(
3
), pp.
1419
1429
.
19.
Yun
,
H. M.
,
Ennis
,
P. J.
,
Nickel
,
H.
, and
Schuster
,
H.
,
1984
, “
The Effect of High-Temperature Reactor Primary Circuit Helium on the Formation and Propagation of Surface Cracks in Alloy 800-H and Inconel-617
,”
J. Nucl. Mater.
,
125
(
3
), pp.
258
272
.
20.
Shankar
,
P. S.
, and
Natesan
,
K.
,
2007
, “
Effect of Trace Impurities in Helium on the Creep Behavior of Alloy 617 for Very High Temperature Reactor Applications
,”
J. Nucl. Mater.
,
366
(
1–2
), pp.
28
36
.
21.
Lee
,
G. G.
,
Jung
,
S.
,
Park
,
J. Y.
,
Kim
,
W. G.
,
Hong
,
S. D.
, and
Kim
,
Y. W.
,
2013
, “
Microstructural Investigation of Alloy 617 Creep-Ruptured at High Temperature in a Helium Environment
,”
J. Mater. Sci. Technol.
,
29
(
12
), pp.
1177
1183
.
22.
Tung
,
H. M.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2014
, “
Biaxial Thermal Creep of Inconel 617 and Haynes 230 at 850 and 950 °C
,”
J. Nucl. Mater.
,
447
(
1–3
), pp.
28
37
.
23.
Chatterjee
,
S.
, and
Roy
,
A. K.
,
2010
, “
Mechanism of Creep Deformation of Alloy 230 Based on Microstructural Analyses
,”
Mater. Sci. Eng. A Struct. Mater.
,
527
(
29–30
), pp.
7893
7900
.
24.
Roy
,
A. K.
,
Chatterjee
,
S.
,
Hasan
,
M. H.
,
Pal
,
J.
, and
Ma
,
L.
,
2010
, “
Crack-Growth Behavior of Alloy 230 Under Creep-Fatigue Conditions
,”
Mater. Sci. Eng. A Struct. Mater.
,
527
(
18–19
), pp.
4830
4836
.
25.
Boehlert
,
C. J.
, and
Longanbach
,
S. C.
,
2011
, “
A Comparison of the Microstructure and Creep Behavior of Cold Rolled HAYNES® 230 Alloy™ and HAYNES® 282 Alloy™
,”
Mater. Sci. Eng. A Struct. Mater.
,
528
(
15
), pp.
4888
4898
.
26.
Pataky
,
G. J.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2013
, “
Creep Deformation and Mechanisms in Haynes 230 at 800 °C and 900 °C
,”
J. Nucl. Mater.
,
443
(
1–3
), pp.
484
490
.
27.
Pataky
,
G. J.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2013
, “
High Temperature Fatigue Crack Growth of Haynes 230
,”
Mater. Charact.
,
75
, pp.
69
78
.
28.
Gross
,
D. W.
,
Nygren
,
K.
,
Pataky
,
G. J.
,
Kacher
,
J.
,
Sehitoglu
,
H.
, and
Robertson
,
I. M.
,
2013
, “
The Evolved Microstructure Ahead of an Arrested Fatigue Crack in Haynes 230
,”
Acta Mater.
,
61
(
15
), pp.
5768
5778
.
29.
Cappelaere
,
M.
,
Perrot
,
M.
, and
Sannier
,
J.
,
1984
, “
Behavior of Metallic Materials Between 550 and 870 °C in High-Temperature Gas-Cooled Reactor Helium Under Pressures of 2 and 50 Bar
,”
Nucl. Technol.
,
66
(
2
), pp.
465
478
.
30.
Chen
,
X.
,
Yang
,
Z. Q.
,
Sokolov
,
M. A.
,
Erdman
,
D. L.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2014
, “
Effect of Creep and Oxidation on Reduced Fatigue Life of Ni-Based Alloy 617 at 850 °C
,”
J. Nucl. Mater.
,
444
(
1–3
), pp.
393
403
.
31.
Chen
,
X.
,
Sokolov
,
M. A.
,
Sham
,
S.
,
Erdman
,
D. L.
,
Busby
,
J. T.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2013
, “
Experimental and Modeling Results of Creep-Fatigue Life of Inconel 617 and Haynes 230 at 850 °C
,”
J. Nucl. Mater.
,
432
(
1–3
), pp.
94
101
.
32.
Chen
,
X.
,
Yang
,
Z. Q.
,
Sokolov
,
M. A.
,
Erdman
,
D. L.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2013
, “
Low Cycle Fatigue and Creep-Fatigue Behavior of Ni-Based Alloy 230 at 850 °C
,”
Mater. Sci. Eng. A Struct. Mater.
,
563
, pp.
152
162
.
33.
Benz
,
J. K.
,
Carroll
,
L. J.
,
Wright
,
J. K.
,
Wright
,
R. N.
, and
Lillo
,
T. M.
,
2014
, “
Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures
,”
Metall. Mater. Trans. A
,
45
(
7
), pp.
3010
3022
.
34.
Gilbert
,
E.
, and
Bates
,
J.
,
1977
, “
Dependence of Irradiation Creep on Temperature and Atom Displacements in 20% Cold Worked Type 316 Stainless Steel
,”
J. Nucl. Mater.
,
65
, pp.
204
209
.
35.
Vitek
,
J.
,
Braski
,
D.
, and
Horak
,
J.
,
1986
, “
Effect of Preinjected Helium on the Response of V-20Ti Pressurized Tubes to Neutron Irradiation
,”
J. Nucl. Mater.
,
141–143
(
Pt. 2
), pp.
982
986
.
36.
Tsai
,
H.
,
Matsui
,
H.
,
Billone
,
M.
,
Strain
,
R.
, and
Smith
,
D.
,
1998
, “
Irradiation Creep of Vanadium-Base Alloys
,”
J. Nucl. Mater.
,
258–263
(
Part 2
), pp.
1471
1475
.
37.
Tung
,
H.-M.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2014
, “
Biaxial Thermal Creep of Inconel 617 and Haynes 230 at 850 and 950 °C
,”
J. Nucl. Mater.
,
447
(
1–3
), pp.
28
37
.
38.
Gilbert
,
E. R.
, and
Blackburn
,
L. D.
,
1977
, “
Creep Deformation of 20 Percent Cold-Worked Type 316 Stainless-Steel
,”
ASME J. Eng. Mater. Technol.
,
99
(
2
), pp.
168
180
.
39.
Li
,
M.
,
Nagasaka
,
T.
,
Hoelzer
,
D.
,
Grossbeck
,
M.
,
Zinkle
,
S.
,
Muroga
,
T.
,
Fukumoto
,
K.
,
Matsui
,
H.
, and
Narui
,
M.
,
2007
, “
Biaxial Thermal Creep of Two Heats of V4Cr4Ti at 700 and 800 °C in a Liquid Lithium Environment
,”
J. Nucl. Mater.
,
367–370
(
Part A
), pp.
788
793
.
40.
Fukumoto
,
K.
,
Matsui
,
H.
,
Narui
,
M.
,
Nagasaka
,
T.
, and
Muroga
,
T.
,
2004
, “
Manufacturing Pressurized Creep Tubes From Highly Purified V–4Cr–4Ti alloys, NIFS-Heat2
,”
J. Nucl. Mater.
,
335
(
1
), pp.
103
107
.
41.
Gelles
,
D.
,
Toloczko
,
M.
, and
Kurtz
,
R.
,
2007
, “
Thermal Creep Mechanisms in V–4Cr–4Ti Pressurized Tube Specimens
,”
J. Nucl. Mater.
,
367–370
(
Part A
), pp.
869
875
.
42.
Hishinuma
,
A.
,
Vitek
,
J.
,
Horak
,
J.
, and
Bloom
,
E.
,
1982
, “
Effect of Preinjected Helium on Swelling and Microstructure of Neutron Irradiated Pressurized Tubes of Type 316 Stainless Steel
,”
11th Conference on Effects of Radiation on Materials
, Scottsdale, AZ, June 28–30, ASTM STP 782, pp.
92
107
.
43.
Shrestha
,
T.
,
Basirat
,
M.
,
Charit
,
I.
,
Potirniche
,
G. P.
,
Rink
,
K. K.
, and
Sahaym
,
U.
,
2012
, “
Creep Deformation Mechanisms in Modified 9Cr-1Mo Steel
,”
J. Nucl. Mater.
,
423
(
1–3
), pp.
110
119
.
44.
Charit
,
I.
, and
Murty
,
K. L.
,
2008
, “
Creep Behavior of Niobium-Modified Zirconium Alloys
,”
J. Nucl. Mater.
,
374
(
3
), pp.
354
363
.
45.
Mo
,
K.
,
Lovicu
,
G.
,
Tung
,
H. M.
,
Chen
,
X. A.
, and
Stubbins
,
J. F.
,
2011
, “
High Temperature Aging and Corrosion Study on Alloy 617 and Alloy 230
,”
ASME J. Eng. Gas Turbines Power
,
133
(
5
), p.
052908
.
46.
Mo
,
K.
,
Lovicu
,
G.
,
Chen
,
X.
,
Tung
,
H.-M.
,
Hansen
,
J. B.
, and
Stubbins
,
J. F.
,
2013
, “
Mechanism of Plastic Deformation of a Ni-Based Superalloy for VHTR Applications
,”
J. Nucl. Mater.
,
441
(
1–3
), pp.
695
703
.
47.
Mo
,
K.
,
Tung
,
H.-M.
,
Li
,
M.
,
Almer
,
J.
,
Chen
,
X.
,
Chen
,
W.
,
Hansen
,
J. B.
, and
Stubbins
,
J.
,
2013
, “
Synchrotron Radiation Study on Alloy 617 and Alloy 230 for VHTR Application
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p.
021502
.
48.
Mo
,
K.
,
Lovicu
,
G.
,
Tung
,
H.-M.
,
Chen
,
X.
,
Miao
,
Y.
,
Hansen
,
J. B.
, and
Stubbins
,
J. F.
,
2013
, “
Effect of Orientation on Plastic Deformations of Alloy 617 for VHTR Applications
,”
J. Nucl. Mater.
,
443
(
1–3
), pp.
366
377
.
49.
Swindeman
,
R. W.
, and
Pugh
,
C. E.
,
1974
, “
Creep Studies on Type 304 Stainless Steel (Heat 8043813) Under Constant and Varying Loads
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL-TM-4427.
You do not currently have access to this content.