In this study, a new magnesium (Mg) alloy containing 0.4% Ce was developed using the technique of disintegrated melt deposition followed by hot extrusion. The tensile and compressive properties of the developed Mg–0.4Ce alloy were investigated before and after heat treatment with an intention of understanding the influence of cerium on the deformation and corrosion of magnesium. Interestingly, cerium addition has enhanced the strength (by 182% and 118%) as well as the elongation to failure of Mg (by 93% and 8%) under both tensile and compressive loadings, respectively. After heat treatment, under compression, the Mg–0.4Ce(S) alloy exhibited extensive plastic deformation which was 80% higher than that of the as-extruded condition. Considering the tensile and compressive flow curves, the as-extruded Mg–0.4Ce and the heat treated Mg–0.4Ce(S) alloys exhibited variation in the nature and shape of the curves which indicates a disparity in the tensile and compressive deformation behavior. Hence, these tensile and compressive deformation mechanisms were studied in detail for both as-extruded as well as heat treated alloys with the aid of microstructural characterization techniques (scanning electron microscope (SEM), transmission electron microscope (TEM), selective area diffraction (SAD), and X-ray diffraction (XRD) analysis. Furthermore, results of immersion tests of both as-extruded and heat treated alloys revealed an improved corrosion resistance (by ∼3 times in terms of % weight loss) in heat treated state vis-a-vis the as-extruded state.

References

References
1.
Carter
,
J.
,
Melo
,
A.
,
Savic
,
V.
, and
Hector
,
L.
,
2011
, “
Structural Evaluation of an Experimental Aluminum/Magnesium Decklid
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
166
174
.
2.
Savic
,
V.
,
Hector
,
J. L. G.
,
Kim
,
S.
, and
Verma
,
R.
,
2010
, “
Local Mechanical Properties of a Magnesium Hood Inner Component Formed at Elevated Temperature
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021006
.
3.
Yoo
,
M. H.
,
1981
, “
Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals
,”
Metall. Trans. A
,
12
(
3
), pp.
409
418
.
4.
Herrera-Solaz
,
V.
,
Hidalgo-Manrique
,
P.
,
Pérez-Prado
,
M. T.
,
Letzig
,
D.
,
Llorca
,
J.
, and
Segurado
,
J.
,
2014
, “
Effect of Rare Earth Additions on the Critical Resolved Shear Stresses of Magnesium Alloys
,”
Mater. Lett.
,
128
, pp.
199
203
.
5.
Mishra
,
R. K.
,
Gupta
,
A. K.
,
Rao
,
P. R.
,
Sachdev
,
A. K.
,
Kumar
,
A. M.
, and
Luo
,
A. A.
,
2008
, “
Influence of Cerium on the Texture and Ductility of Magnesium Extrusions
,”
Scr. Mater.
,
59
(
5
), pp.
562
565
.
6.
Hantzsche
,
K.
,
Bohlen
,
J.
,
Wendt
,
J.
,
Kainer
,
K. U.
,
Yi
,
S. B.
, and
Letzig
,
D.
,
2010
, “
Effect of Rare Earth Additions on Microstructure and Texture Development of Magnesium Alloy Sheets
,”
Scr. Mater.
,
63
(
7
), pp.
725
730
.
7.
Stanford
,
N.
, and
Barnett
,
M. R.
,
2008
, “
The Origin of ‘Rare Earth' Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility
,”
Mater. Sci. Eng., A
,
496
(
1–2
), pp.
399
408
.
8.
Sabat
,
R. K.
,
Mishra
,
R. K.
,
Sachdev
,
A. K.
, and
Suwas
,
S.
,
2015
, “
The Deciding Role of Texture on Ductility in a Ce Containing Mg Alloy
,”
Mater. Lett.
,
153
, pp.
158
161
.
9.
Stanford
,
N.
,
2010
, “
Micro-Alloying Mg With Y, Ce, Gd and La for Texture Modification—A Comparative Study
,”
Mater. Sci. Eng., A
,
527
(
10–11
), pp.
2669
2677
.
10.
Park
,
K. C.
,
Kim
,
B. H.
,
Kimura
,
H.
,
Park
,
Y. H.
, and
Park
,
I. M.
,
2012
, “
Corrosion Properties and Microstructure of a Broad Range of Ce Additions on Mg–Zn Alloy
,”
Mater. Trans.
,
53
(
2
), pp.
362
366
.
11.
Song
,
Y. L.
,
Liu
,
Y. H.
,
Wang
,
S. H.
,
Yu
,
S. R.
, and
Zhu
,
X. Y.
,
2007
, “
Effect of Cerium Addition on Microstructure and Corrosion Resistance of Die Cast AZ91 Magnesium Alloy
,”
Mater. Corros.
,
58
(
3
), pp.
189
192
.
12.
Chenghao
,
L.
,
Shusen
,
W.
,
Naibao
,
H.
,
Zhihong
,
Z.
,
Shuchun
,
Z.
, and
Jing
,
R.
,
2015
, “
Effects of Lanthanum and Cerium Mixed Rare Earth Metal on Abrasion and Corrosion Resistance of AM60 Magnesium Alloy
,”
Rare Metal Mater. Eng.
,
44
(
3
), pp.
521
526
.
13.
Rokhlin
,
L. L.
,
1962
, “
Solubility of Neodymium and Cerium in Solid State Magnesium
,”
Russ. Metall. Fuels
,
2
, pp.
98
100
.
14.
Robson
,
J. D.
,
Henry
,
D. T.
, and
Davis
,
B.
,
2011
, “
Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle Pinning
,”
Mater. Sci. Eng., A
,
528
(
12
), pp.
4239
4247
.
15.
Pierre Villars, Material Phases Data System (MPDS)
,
2014
, “
Ce2Mg17 (Mg17Ce2 ht) Crystal Structure
,”
SpringerMaterials
, Vitznau, Switzerland, Data Set ID #sd_0457831.
16.
Pierre Villars, Material Phases Data System (MPDS)
,
2014
, “
Ce5Mg41 (Mg41Ce5 ht) Crystal Structure
,”
SpringerMaterials
, Vitznau, Switzerland, Data Set ID #sd_0250396.
17.
Nie
,
J. F.
,
2003
, “
Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys
,”
Scr. Mater.
,
48
(
8
), pp.
1009
1015
.
18.
Chino
,
Y.
,
Kado
,
M.
, and
Mabuchi
,
M.
,
2008
, “
Compressive Deformation Behavior at Room Temperature—773 K in Mg–0.2 Mass%(0.035at.%)Ce Alloy
,”
Acta Mater.
,
56
(
3
), pp.
387
394
.
19.
Leyson
,
G. P. M.
,
Hector
,
L. G.
, Jr.
, and
Curtin
,
W. A.
,
2012
, “
First-Principles Prediction of Yield Stress for Basal Slip in Mg–Al Alloys
,”
Acta Mater.
,
60
(
13–14
), pp.
5197
5203
.
20.
Agnew
,
S. R.
,
Yoo
,
M. H.
, and
Tomé
,
C. N.
,
2001
, “
Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y
,”
Acta Mater.
,
49
(
20
), pp.
4277
4289
.
21.
Yoo
,
M. H.
,
Morris
,
J. R.
,
Ho
,
K. M.
, and
Agnew
,
S. R.
,
2002
, “
Nonbasal Deformation Modes of HCP Metals and Alloys: Role of Dislocation Source and Mobility
,”
Metall. Mater. Trans. A
,
33
(
3
), pp.
813
822
.
22.
Barnett
,
M. R.
,
2007
, “
Twinning and the Ductility of Magnesium Alloys: Part II. ‘Contraction' Twins
,”
Mater. Sci. Eng., A
,
464
(
1–2
), pp.
8
16
.
23.
Mukai
,
T.
,
Yamanoi
,
M.
,
Watanabe
,
H.
, and
Higashi
,
K.
,
2001
, “
Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure
,”
Scr. Mater.
,
45
(
1
), pp.
89
94
.
24.
Wood
,
C.
,
1965
, “
Phase Relations in the Magnesium-Rich Portion of the Cerium-Magnesium System
,”
J. Less-Common Met.
,
9
(
5
), pp.
321
337
.
25.
Evdokimenko
,
V. I.
, and
Kripyakevich
,
P. I.
,
1963
, “
The Crystal Structures of Magnesium-Rich Compounds in the Systems La-Mg, Ce-Mg, and Nd-Mg
,”
Sov. Phys.-Crystallogr.
,
8
, pp.
186
193
.
26.
Cullity
,
B. D.
,
1978
,
Elements of X-Ray Diffraction
,
Addison-Wesley
,
Reading, MA
.
27.
Sankaranarayanan
,
S.
,
Pranav Nayak
,
U.
,
Sabat
,
R. K.
,
Suwas
,
S.
,
Almajid
,
A.
, and
Gupta
,
M.
,
2014
, “
Nano-ZnO Particle Addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response
,”
J. Alloys Compd.
,
615
, pp.
211
219
.
28.
Ye
,
H.
,
2003
, “
An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications
,”
J. Mater. Eng. Perform.
,
12
(
3
), pp.
288
297
.
29.
Hu
,
X. S.
,
Wu
,
K.
,
Zheng
,
M. Y.
,
Gan
,
W. M.
, and
Wang
,
X. J.
,
2007
, “
Low Frequency Damping Capacities and Mechanical Properties of Mg–Si Alloys
,”
Mater. Sci. Eng., A
,
452–453
, pp.
374
379
.
30.
Barnett
,
M. R.
,
2007
, “
Twinning and the Ductility of Magnesium Alloys: Part I: ‘Tension' Twins
,”
Mater. Sci. Eng., A
,
464
(
1–2
), pp.
1
7
.
31.
Xin
,
Y.
,
Wang
,
M.
,
Zeng
,
Z.
,
Nie
,
M.
, and
Liu
,
Q.
,
2012
, “
Strengthening and Toughening of Magnesium Alloy by {1 0 −1 2} Extension Twins
,”
Scr. Mater.
,
66
(
1
), pp.
25
28
.
32.
Sarker
,
D.
, and
Chen
,
D. L.
,
2012
, “
Detwinning and Strain Hardening of an Extruded Magnesium Alloy During Compression
,”
Scr. Mater.
,
67
(
2
), pp.
165
168
.
33.
Tsai
,
M. S.
, and
Chang
,
C. P.
,
2013
, “
Grain Size Effect on Deformation Twinning in Mg–Al–Zn Alloy
,”
Mater. Sci. Technol.
,
29
(
6
), pp.
759
763
.
34.
Barnett
,
M. R.
,
Keshavarz
,
Z.
,
Beer
,
A. G.
, and
Atwell
,
D.
,
2004
, “
Influence of Grain Size on the compressive Deformation of Wrought Mg–3Al–1Zn
,”
Acta Mater.
,
52
(
17
), pp.
5093
5103
.
35.
Ralston
,
K. D.
, and
Birbilis
,
N.
,
2010
, “
Effect of Grain Size on Corrosion: A Review
,”
Corrosion
,
66
(
7
), p.
075005
.
36.
Xin
,
R.
,
Li
,
B.
,
Li
,
L.
, and
Liu
,
Q.
,
2011
, “
Influence of Texture on Corrosion Rate of AZ31 Mg Alloy in 3.5 wt.% NaCl
,”
Mater. Des.
,
32
(
8–9
), pp.
4548
4552
.
37.
Pu
,
Z.
,
Song
,
G. L.
,
Yang
,
S.
,
Outeiro
,
J. C.
,
Dillon
,
O. W.
, Jr.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2012
, “
Grain Refined and Basal Textured Surface Produced by Burnishing for Improved Corrosion Performance of AZ31B Mg Alloy
,”
Corros. Sci.
,
57
, pp.
192
201
.
You do not currently have access to this content.