A dislocation density-based crystal plasticity framework, a nonlinear computational finite-element methodology adapted for nucleation of crack on cleavage planes, and rational crystallographic orientation relations were used to predict the failure modes associated with the high strain rate behavior of aluminum-bonded composites. A bonded aluminum composite, suitable for high strain-rate damage resistance application, was modeled with different microstructures representing precipitates, dispersed particles, and grain boundary (GB) distributions. The dynamic fracture approach is used to investigate crack nucleation and growth as a function of the different microstructural characteristics of each alloy in bonded composites with and without pre-existing cracks. The nonplanar and irregular nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations, ahead of the crack front. The evolution of dislocation density and the subsequent formation of localized plastic slip contributed to the blunting of the propagating crack(s). Extensive geometrical and thermal softening resulted in localized plastic slip and had a significant effect on crack path orientations and directions along cleavage planes.

References

References
1.
Freund
,
L. B.
,
1990
,
Dynamic Fracture Mechanics
,
1st ed.
,
Cambridge University Press
,
New York
, pp.
104
150
.
2.
Brünig
,
M.
, and
Gerke
,
S.
,
2011
, “
Simulation of Damage Evolution in Ductile Metals Undergoing Dynamic Loading Conditions
,”
Int. J. Plast.
,
27
(
10
), pp.
1598
1617
.
3.
Liu
,
D. H.
,
Yu
,
H. P.
, and
Li
,
C. F.
,
2012
, “
Comparative Study of the Microstructure of 5052 Aluminum Alloy Sheets Under Quasi-Static and High-Velocity Tension
,”
Mater. Sci. Eng. A
,
551
, pp.
280
287
.
4.
Chu
,
H. J.
,
Wang
,
J.
,
Beyerlein
, I
. J.
, and
Pan
,
E.
,
2013
, “
Dislocation Models of Interfacial Shearing Induced by an Approaching Lattice Glide Dislocation
,”
Int. J. Plast.
,
41
, pp.
1
13
.
5.
Pedrazas
,
N. A.
,
Worthington
,
D. L.
,
Dalton
,
D. A.
,
Sherek
,
P. A.
,
Steuck
,
S. P.
,
Quevedo
,
H. J.
, and
Ditmire
,
T.
,
2012
, “
Effects of Microstructure and Composition on Spall Fracture in Aluminum
,”
Mater. Sci. Eng. A
,
536
, pp.
117
123
.
6.
Lesuer
,
D. R.
,
Syn
,
C. K.
,
Sherby
,
O. D.
,
Wadsworth
,
J.
,
Lewandowski
,
J. J.
, and
Hunt
,
W. H.
,
1996
, “
Mechanical Behavior of Laminated Metal Composite
,”
Int. Mater. Rev.
,
41
(
5
), pp.
169
197
.
7.
Cepeda-Jiménez
,
C. M.
,
Hidalgo
,
P.
,
Pozuelo
,
M.
,
Ruano
,
O. A.
, and
Carreño
,
F.
,
2010
, “
Influence of Constituent Materials on the Impact Toughness and Fracture Mechanisms of Hot-Roll-Bonded Aluminum Multilayer Laminates
,”
Metall. Mater. Trans. A
,
41A
(
1
), pp.
61
72
.
8.
Cepeda-Jiménez
,
C. M.
,
Pozuelo
,
M.
,
García-Infanta
,
J. M.
,
Ruano
,
O. A.
, and
Carreño
,
F.
,
2009
, “
Interface Effects on the Fracture Mechanism of a High-Toughness Aluminum-Composite Laminate
,”
Metall. Mater. Trans. A
,
40A
(
1
), pp.
69
79
.
9.
Weck
,
A.
,
Bisaillon
,
P.
,
Nong
,
L.
,
Meunier
,
T.
,
Jin
,
H.
, and
Gallerneault
,
M.
,
2011
, “
Mechanical Properties of the Aluminum Roll-Bond Laminate AA5005-AA5083-AA5005
,”
Mater. Sci. Eng. A
,
528
(
19–20
), pp.
6186
6193
.
10.
Osman
,
T. M.
,
Hassan
,
H. A.
, and
Lewandowski
,
J. J.
,
2008
, “
Interface Effects on the Quasi-Static and Impact Toughness of Discontinuously Reinforced Aluminum Laminates
,”
Metall. Mater. Trans. A
,
39A
(
8
), pp.
1993
2006
.
11.
Woodward
,
R. L.
, and
Cimpoeru
,
S. J.
,
1998
, “
A Study of the Perforation of Aluminium Laminate Targets
,”
Int. J. Impact Eng.
,
21
(
3
), pp.
117
131
.
12.
Roeder
,
B. A.
, and
Sun
,
C. T.
,
2001
, “
Dynamic Penetration of Alumina/Aluminum Laminates: Experiments and Modeling
,”
Int. J. Impact Eng.
,
25
(
2
), pp.
169
185
.
13.
Børvik
,
T.
,
Clausen
,
A. H.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2004
, “
Perforation of AA5083-H116 Aluminium Plates With Conical-Nose Steel Projectiles—Experimental Study
,”
Int. J. Impact Eng.
,
30
(
4
), pp.
367
384
.
14.
Riddle
,
R.
,
Lesuer
,
D.
,
Syn
,
C.
,
Gogolewski
,
R.
, and
Cunningham
,
B.
,
1996
, “
Application of Metal Laminates to Aircraft Structures: Prediction of Penetration Performance
,”
Finite Elem. Anal. Des.
,
23
(
2–4
), pp.
173
192
.
15.
Salem
,
H. G.
,
Lee
,
W. M.
,
Bodelot
,
L.
,
Ravichandran
,
G.
, and
Zikry
,
M. A.
,
2012
, “
Quasi-Static and High-Strain-Rate Experimental Microstructural Investigation of a High-Strength Aluminum Alloy
,”
Metall. Mater. Trans. A
,
43A
(
6
), pp.
1895
1901
.
16.
Lee
,
W. M.
, and
Zikry
,
M. A.
,
2011
, “
Microstructural Characterization of a High-Strength Aluminum Alloy Subjected to High Strain-Rate Impact
,”
Metall. Mater. Trans. A
,
42
(
5
), pp.
1215
1221
.
17.
Crooks
,
R.
,
Wang
,
Z.
,
Levit
,
V. I.
, and
Shenoy
,
R. N.
,
1998
, “
Microtexture, Microstructure and Plastic Anisotropy of AA2195
,”
Mater. Sci. Eng. A
,
257
(
1
), pp.
145
152
.
18.
Tayon
,
W.
,
Crooks
,
R.
,
Domack
,
M.
,
Wagner
,
J.
, and
Elmustafa
,
A. A.
,
2010
, “
EBSD Study of Delamination Fracture in Al–Li Alloy 2090
,”
Exp. Mech.
,
50
(
1
), pp.
135
143
.
19.
Khan
,
A. S.
, and
Liu
,
H.
,
2012
, “
A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy
,”
Int. J. Plast.
,
35
, pp.
1
12
.
20.
Deschamps
,
A.
,
Péron
,
S.
,
Bréchet
,
Y.
,
Ehrström
,
J. C.
, and
Poizat
,
L.
,
2002
, “
High Temperature, High Strain Rate Embrittlement of Al-Mg-Mn Alloy: Evidence of Cleavage of an fcc Alloy
,”
Mater. Sci. Technol.
,
18
(
10
), pp.
1085
1091
.
21.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
22.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.
23.
Song
,
J. H.
,
Wang
,
H.
, and
Belytschko
,
T.
,
2008
, “
A Comparative Study on Finite Element Methods for Dynamic Fracture
,”
Comput. Mech.
,
42
(
2
), pp.
239
250
.
24.
Shanthraj
,
P.
, and
Zikry
,
M. A.
,
2013
, “
Microstructurally Induced Fracture Nucleation and Propagation in Martensitic Steels
,”
J. Mech. Phys. Solids
,
61
(
4
), pp.
1091
1105
.
25.
Elkhodary
,
K. I.
, and
Zikry
,
M. A.
,
2012
, “
Dynamic Crack Nucleation, Propagation, and Interactions With Crystalline Secondary Phases in Aluminum Alloys Subjected to Large Deformations
,”
Int. J. Fract.
,
92
(
32
), pp.
3920
3949
.
26.
Khanikar
,
P.
, and
Zikry
,
M. A.
,
2014
, “
Predictions of High Strain-Rate Failure Modes in Layered Aluminum Composites
,”
Metall. Mater. Trans. A
,
45
(
1
), pp.
60
71
.
27.
Khanikar
,
P.
, and
Zikry
,
M. A.
,
2014
, “
High Strain-Rate Interfacial Behavior of Layered Metallic Composites
,”
Mech. Mater.
,
77
, pp.
52
66
.
28.
Hansbo
,
A.
, and
Hansbo
,
P.
,
2004
, “
A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
33–35
), pp.
3523
3540
.
29.
Orsini
,
V. C.
, and
Zikry
,
M. A.
,
2001
, “
Void Growth and Interaction in Crystalline Materials
,”
Int. J. Plast.
,
17
(
10
), pp.
1393
1417
.
30.
Zikry
,
M. A.
, and
Kao
,
M.
,
1996
, “
Inelastic Microstructural Failure Mechanisms in Crystalline Materials With High Angle Grain Boundaries
,”
J. Mech. Phys. Solids
,
44
(
11
), pp.
1765
1798
.
31.
Ashmawi
,
W.
, and
Zikry
,
M. A.
,
2002
, “
Prediction of Grain-Boundary Interfacial Mechanisms in Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
,
124
(
1
), pp.
88
96
.
32.
Shanthraj
,
P.
, and
Zikry
,
M. A.
,
2012
, “
Dislocation-Density Mechanisms for Void Interactions in Crystalline Materials
,”
Int. J. Plast.
,
34
, pp.
154
163
.
33.
Mughrabi
,
H.
,
1987
, “
A 2-Parameter Description of Heterogeneous Dislocation Distributions in Deformed Metal Crystals
,”
Mater. Sci. Eng.
,
85
, pp.
15
31
.
34.
Kameda
,
T.
, and
Zikry
,
M. A.
,
1998
, “
Three Dimensional Dislocation-Based Crystalline Constitutive Formulation for Ordered Intermetallics
,”
Scr. Mater.
,
38
(
4
), pp.
631
636
.
35.
Shanthraj
,
P.
, and
Zikry
,
M. A.
,
2011
, “
Dislocation Density Evolution and Interactions in Crystalline Materials
,”
Acta Mater.
,
59
(
20
), pp.
7695
7702
.
36.
Zikry
,
M. A.
,
1994
, “
An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity
,”
Comput. Struct.
,
50
(
3
), pp.
337
350
.
37.
Polmear
,
I. J.
, and
Chester
,
R. J.
,
1989
, “
Abnormal Age Hardening in an Al-Cu-Mg Alloy Containing Silver and Lithium
,”
Scr. Metall.
,
23
(
7
), pp.
1213
1218
.
38.
Bonnet
,
R.
, and
Loubradou
,
M.
,
2002
, “
Crystalline Defects in a BCT Al2Cu(θ) Single Crystal Obtained by Unidirectional Solidification Along [001]
,”
Phys. Status Solidi A
,
194
(
1
), pp.
173
191
.
39.
Ignat
,
M.
, and
Durand
,
F.
,
1976
, “
Deformation Lines on Al2Cu Single-Crystals After Creep in Compression
,”
Scr. Metall.
,
10
(
7
), pp.
623
626
.
40.
Wang
,
S. C.
, and
Starink
,
M. J.
,
2005
, “
Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys
,”
Int. Mater. Rev.
,
50
(
4
), pp.
193
215
.
41.
Polmear
,
I. J.
,
2006
,
Light Alloys-From Traditional Alloys to Nanocrystals
,
4th ed.
,
Elsevier/Butterworth-Heinemann
,
Burlington, MA
, pp.
154
155
.
42.
Chen
,
P. S.
,
Kuruvilla
,
A. K.
,
Malone
,
T. W.
, and
Stanton
,
W. P.
,
1998
, “
The Effects of Artificial Aging on the Microstructure and Fracture Toughness of Al-Cu-Li Alloy 2195
,”
J. Mater. Eng. Perform.
,
7
(
5
), pp.
682
690
.
43.
Chaturvedi
,
M. C.
, and
Chen
,
D. L.
,
2006
, “
Microstructural Characterization and Fatigue Properties of 2195 Al-Li Alloy
,”
Mater. Sci. Forum
,
519–521
, pp.
147
152
.
44.
Huang
,
J. C.
, and
Ardell
,
A. J.
,
1987
, “
Strengthening Mechanisms Associated With T1 Particles in 2 Al-Li-Cu Alloys
,”
J. Phys.
,
48
(
C3
), pp.
373
383
.
45.
Cerny
,
R.
,
Joubert
,
J. M.
,
Latroche
,
M.
,
Percheron-Guégan
,
A.
, and
Yvon
,
K.
,
2000
, “
Anisotropic Diffraction Line Broadening and Dislocation Substructure in Hydrogen Cycled LaNi5 and Substitutional Derivatives
,”
J. Appl. Crystallogr.
,
33
(
4
), pp.
997
1005
.
46.
Prasad
,
K. S.
,
Gokhale
,
A. A.
,
Mukhopadhyay
,
A. K.
,
Banerjee
,
D.
, and
Goel
,
D. B.
,
1999
, “
On the Formation of Faceted Al3Zr (β') Precipitates in Al-Li-Cu-Mg-Zr Alloys
,”
Acta Mater.
,
47
(
8
), pp.
2581
2592
.
47.
Vecchio
,
K. S.
, and
Williams
,
B. D.
,
1987
, “
Convergent Beam Electron-Diffraction Study of Al3Zr in Al-Zr and Al-Li-Zr Alloys
,”
Acta Metall.
,
35
(
12
), pp.
2959
2970
.
48.
Elkhodary
,
K.
,
Sun
,
L.
,
Irving
,
D.
,
Brenner
,
D.
,
Ravichandran
,
G.
, and
Zikry
,
M. A.
,
2009
, “
Integrated Experimental, Atomistic, and Microstructurally Based Finite Element Investigation of the Dynamic Compressive Behavior of 2139 Aluminum
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051306
.
49.
Wu
,
Q.
, and
Zikry
,
M. A.
,
2014
, “
Microstructural Modeling of Crack Nucleation and Propagation in High Strength Martensitic Steels
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4345
4356
.
50.
Song
,
J. H.
,
Areias
,
P. M. A.
, and
Belytschko
,
T.
,
2006
, “
A Method for Dynamic Crack and Shear Band Propagation With Phantom Nodes
,”
Int. J. Numer. Methods Eng.
,
67
(
6
), pp.
868
893
.
51.
Morris
,
J. W.
,
2011
, “
On the Ductile-Brittle Transition in Lath Martensitic Steel
,”
ISIJ Int.
,
51
(
10
), pp.
1569
1575
.
52.
Wang
,
C.
,
Wang
,
M.
,
Shi
,
J.
,
Hui
,
W.
, and
Dong
,
H.
,
2008
, “
Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel
,”
Scr. Mater.
,
58
(
6
), pp.
492
495
.
53.
Khanikar
,
P.
,
Liu
,
Y.
, and
Zikry
,
M. A.
,
2014
, “
Experimental and Computational Investigation of the Dynamic Behavior of Al–Cu–Li Alloys
,”
Mater. Sci. Eng. A
,
604
, pp.
67
77
.
54.
Williams
,
C. L.
,
Ramesh
,
K. T.
, and
Dandekar
,
D. P.
,
2012
, “
Spall Response of 1100-O Aluminum
,”
J. Appl. Phys.
,
111
(
12
), p.
123528
.
55.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley
,
New York
.
56.
Shockey
,
D. A.
,
Seaman
,
L.
, and
Curran
,
D. R.
,
1973
, “
The Influence of Microstructural Features on Dynamic Fracture
,”
Metallurgical Effects at High Strain Rates
,
R. W.
Rohde
,
B. M.
Butcher
,
J. R.
Holland
, and
C. H.
Karnes
, eds.,
Plenum
,
New York
, pp.
473
499
.
57.
Kameda
,
T.
, and
Zikry
,
M. A.
,
1998
, “
Intergranular and Transgranular Crack Growth at Triple Junction Boundaries in Ordered Intermetallics
,”
Int. J. Plast.
,
14
(
8
), pp.
689
702
.
You do not currently have access to this content.