An optically transparent woven glass fiber-reinforced polyester composite has been fabricated. This composite has been used as an interlayer in the fabrication of a laminated glass-composite window panel for application in blast-resistant windows. The transparency of the glass fiber-reinforced composite was achieved by matching the refractive index of the polyester matrix with that of glass fibers. Various chemical additives have been investigated for their effectiveness in modifying the refractive index of the polyester matrix. The composite interlayer's mechanical properties under both quasi-static and dynamic loading conditions have been characterized in this study. The window panels were tested under various blast loading conditions. The panels perform well under U.S. General Services Administration (GSA) specified C, D, and E blast loading levels.

References

References
1.
O'Brien
,
D. J.
, and
Parquette
,
B.
,
2012
, “
Polymer Toughness Transfer in a Transparent Interpenetrating Glass–Polymer Composite
,”
Compos. Sci. Technol.
,
73
(
1
), pp.
57
63
.
2.
Brennan
,
R. E.
, and
Green
,
W. H.
,
2011
,
Nondestructive Characterization of Low Velocity Impact Damage in Transparent Laminate Systems
,
Wiley
,
Hoboken, NJ
.
3.
Iba
,
H.
,
Chang
,
T.
, and
Kagawa
,
Y.
,
2002
, “
Optically Transparent Continuous Glass Fibre-Reinforced Epoxy Matrix Composite: Fabrication, Optical and Mechanical Properties
,”
Compos. Sci. Technol.
,
62
(
15
), pp.
2043
2052
.
4.
Olson
,
J. R.
,
Day
,
D. E.
, and
Stoffer
,
J. O.
,
1992
, “
Fabrication and Mechanical Properties of an Optically Transparent Glass Fiber/Polymer Matrix Composite
,”
J. Compos. Mater.
,
26
(
8
), pp.
1181
1192
.
5.
Khanna
,
S. K.
,
Ellingsen
,
M. D.
, and
Winter
,
R. M.
,
2004
, “
Investigation of Fracture in Transparent Glass Fiber Reinforced Polymer Composites Using Photoelasticity
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
1
7
.
6.
Moriwaki
,
T.
,
1996
, “
Mechanical Property Enhancement of Glass Fibre-Reinforced Polyamide Composite Made by Direct Injection Moulding Process
,”
Composites, Part A
,
27
(
5
), pp.
379
384
.
7.
Iba
,
H.
,
Naganuma
,
T.
,
Matsumura
,
K.
, and
Kagawa
,
Y.
,
1999
, “
Fabrication of Transparent Continuous Oxynitride Glass Fiber-Reinforced Glass Matrix Composite
,”
J. Mater. Sci.
,
34
(
23
), pp.
5701
5705
.
8.
Iba
,
H.
, and
Kagawa
,
Y.
,
1998
, “
Light Transmittance of Continuous Fibre-Reinforced Composites: Analysis, Model Experiment and Parametric Study
,”
Philos. Mag. B
,
78
(
1
), pp.
37
52
.
9.
Sarva
,
S.
,
Mulliken
,
A. D.
,
Boyce
,
M. C.
, and
Hsieh
,
A. J.
,
2004
, “
Mechanics of Transparent Polymeric Material Assemblies Under Projectile Impact: Simulations and Experiments
,”
24th Army Science Conference
, Orlando, FL, Nov. 29-Dec. 2.
10.
Yahya
,
M. Y.
,
Cantwell
,
W. J.
,
Langdon
,
G.
, and
Nurick
,
G.
,
2008
, “
The Blast Behavior of Fiber Reinforced Thermoplastic Laminates
,”
J. Compos. Mater.
,
42
(
21
), pp.
2275
2297
.
11.
Avci
,
A.
,
Arikan
,
H.
, and
Akdemir
,
A.
,
2004
, “
Fracture Behavior of Glass Fiber Reinforced Polymer Composite
,”
Cem. Concr. Res.
,
34
(
3
), pp.
429
434
.
12.
Nikpur
,
K.
,
Chen
,
Y.
, and
Kardos
,
J.
,
1990
, “
Fracture Toughness of Unidirectional Short-Fiber Reinforced Epoxy Composites
,”
Compos. Sci. Technol.
,
38
(
2
), pp.
175
191
.
13.
Mouritz
,
A.
,
2001
, “
Ballistic Impact and Explosive Blast Resistance of Stitched Composites
,”
Composites, Part B
,
32
(
5
), pp.
431
439
.
14.
Pankow
,
M.
,
Salvi
,
A.
,
Waas
,
A.
,
Yen
,
C.
, and
Ghiorse
,
S.
,
2011
, “
Split Hopkinson Pressure Bar Testing of 3D Woven Composites
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1196
1208
.
15.
Hokka
,
M.
,
Kuokkala
,
V. T.
, and
Ihme
,
S.
,
2009
, “
Dynamic Tensile Testing of Polyamide Sheets Using the HSB Technique
,”
SEM Annual Conference and Exposition on Experimental and Applied Mechanics
, Albuquerque, NM, June 1-4.
16.
Kim
,
W.
,
Argento
,
A.
,
Lee
,
E.
,
Flanigan
,
C.
,
Houston
,
D.
, and
Harris
,
A.
,
2012
, “
High Strain-Rate Behavior of Natural Fiber-Reinforced Polymer Composites
,”
J. Compos. Mater.
,
46
(
9
), pp.
1051
1065
.
17.
Jiang
,
F.
, and
Vecchio
,
K. S.
,
2009
, “
Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests
,”
ASME Appl. Mech. Rev.
,
62
(
6
), pp.
1
39
.
18.
Hosur
,
M.
,
Alexander
,
J.
,
Jeelani
,
S.
,
Vaidya
,
U.
, and
Mayer
,
A.
,
2003
, “
High Strain Compression Response of Affordable Woven Carbon/Epoxy Composites
,”
J. Reinf. Plast. Compos.
,
22
(
3
), pp.
271
296
.
19.
Hosur
,
M.
,
Alexander
,
J.
,
Vaidya
,
U.
,
Jeelani
,
S.
, and
Mayer
,
A.
,
2004
, “
Studies on the Off-Axis High Strain Rate Compression Loading of Satin Weave Carbon/Epoxy Composites
,”
Compos. Struct.
,
63
(
1
), pp.
75
85
.
20.
Shokrieh
,
M. M.
, and
Omidi
,
M. J.
,
2009
, “
Compressive Response of Glass–Fiber Reinforced Polymeric Composites to Increasing Compressive Strain Rates
,”
Compos. Struct.
,
89
(
4
), pp.
517
523
.
21.
Cao
,
M. S.
,
Song
,
W. L.
,
Zhou
,
W.
,
Wang
,
D. W.
,
Rong
,
J. L.
, and
Yuan
,
J.
,
2010
, “
Dynamic Compressive Response and Failure Behavior of Fiber Polymer Composites Embedded With Tetra-Needle-Like ZnO Nanowhiskers
,”
Compos. Struct.
,
92
(
12
), pp.
2984
2991
.
22.
Shokrieh
,
M. M.
, and
Omidi
,
M. J.
,
2009
, “
Tension Behavior of Unidirectional Glass/Epoxy Composites Under Different Strain Rates
,”
Compos. Struct.
,
88
(
4
), pp.
595
601
.
23.
Schoßig
,
M.
,
Bierögel
,
C.
,
Grellmann
,
W.
, and
Mecklenburg
,
T.
,
2008
, “
Mechanical Behavior of Glass-Fiber Reinforced Thermoplastic Materials Under High Strain Rates
,”
Polym. Test.
,
27
(
7
), pp.
893
900
.
24.
Song
,
B.
,
Chen
,
W.
, and
Weerasooriya
,
T.
,
2003
, “
Quasi-Static and Dynamic Compressive Behaviors of a S-2 Glass/SC15 Composite
,”
J. Compos. Mater.
,
37
(
19
), pp.
1723
1743
.
25.
ASTM
,
2007
, “
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
,” ASTM International, West Conshohocken, PA,
ASTM
Standard No. D3039/D3039M-07.
26.
ASTM
,
2007
, “
Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate
,” ASTM International, West Conshohocken, PA,
ASTM
Standard No. D3518/D3518M-94.
27.
Cherepanov
,
G.
,
1967
, “
Crack Propagation in Continuous Media PMM
,”
J. Appl. Math. Mech.
,
31
(
3
), pp.
503
512
.
28.
Rice
,
J. R.
,
1967
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
29.
Agarwal
,
B.
,
Kumar
,
P.
, and
Khanna
,
S. K.
,
1986
, “
Determination of the Fracture Toughness of Fabric Reinforced Composites by the J-Integral Approach
,”
Compos. Sci. Technol.
,
25
(
4
), pp.
311
323
.
30.
Landes
,
J.
, and
Begley
,
J.
,
1972
, “
The Effect of Specimen Geometry on JIC
,”
National Symposium on Fracture Mechanics and Fracture Toughness
, Urbana-Champaign, IL, Aug. 31-Sept. 2, 1971, pp.
24
39
.
31.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
ASME Appl. Mech. Rev.
,
57
(
4
), pp.
223
250
.
32.
Phan
,
H. T.
,
2012
,
High Strain Rate Behavior of Graphene Reinforced Polyurethane Composites
,
University of Missouri
,
Columbia, MO
.
33.
Woldesenbet
,
E.
, and
Vinson
,
J. R.
,
1999
, “
Specimen Geometry Effects on High-Strain-Rate Testing of Graphite/Epoxy Composites
,”
AIAA J.
,
37
(
9
), pp.
1102
1106
.
34.
ASTM
,
2011
, “
Standard Test Method for Ignition Loss of Cured Reinforced Resins
,” ASTM International, West Conshohocken, PA,
ASTM
Standard No. D2584-11.
35.
Aditi
,
C.
,
2012
,
On-Orbit Assessment of Satellite Structural Properties Via Robust Structural Health Monitoring
,
Arizona State University
,
Tempe, AZ
.
36.
Van
,
D. H. H. C.
,
1981
,
Light Scattering by Small Particles
,
Dover Publications
,
Mineola, NY
.
37.
Askadskii
,
A. A.
,
1990
, “
Influence of Crosslinking Density on the Properties of Polymer Networks
,”
Polym. Sci. USSR
,
32
(
10
), pp.
2061
2069
.
38.
Murakami
,
K.
, and
Ando
,
S.
,
2011
, “
Effects of UV Crosslinking Under High Temperature on the Refractive Indices and Aggregation Structures of Benzophenone-Containing Polyimides
,”
J. Photopolym. Sci. Technol.
,
24
(
3
), pp.
277
282
.
39.
Jenkins
,
F. A.
, and
White
,
H. E.
,
1957
,
Fundamentals of Optics
,
3rd ed.
,
McGraw-Hill
,
New York
.
40.
Zhu
,
H.
,
2014
, “
Fabrication and Characterization of Novel Transparent Laminated Glass-Composite Panels for Dynamic Load Mitigation
,” Ph.D. dissertation, University of Missouri, Columbia, MO.
41.
Khanna
,
S. K.
, and
Phan
,
H. T.
,
2015
, “
High Strain Rate Behavior of Graphene Reinforced Polyurethane Composites
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), pp.
1
10
.
42.
Li
,
Y.
,
Lin
,
Z.
,
Jiang
,
A.
, and
Chen
,
G.
,
2004
, “
Experimental Study of Glass-Fiber Mat Thermoplastic Material Impact Properties and Lightweight Automobile Body Analysis
,”
Mater. Des.
,
25
(
7
), pp.
579
585
.
43.
Guo
,
Y.
, and
Li
,
Y.
,
2007
, “
Quasi-Static/Dynamic Response of SiO2–Epoxy Nanocomposites
,”
Mater. Sci. Eng. A
,
458
(
1
), pp.
330
335
.
44.
Omar
,
M. F.
,
Akil
,
H. M.
,
Ahmad
,
Z. A.
,
Mazuki
,
A. A. M.
, and
Yokoyama
,
T.
,
2010
, “
Dynamic Properties of Pultruded Natural Fibre Reinforced Composites Using Split Hopkinson Pressure Bar Technique
,”
Mater. Des.
,
31
(
9
), pp.
4209
4218
.
You do not currently have access to this content.