This study investigates the influence of titanium (Ti) and magnesium (Mg) additions on aluminum (Al) alloys in order to evaluate the relationship between the structure and properties of the new alloys. The alloys obtained at elevated temperatures mainly consist of Al–2Mg–1Ti, Al–2Mg–3Ti, Al–4Mg–2Ti, and Al–6Mg–2Ti alloys, as well as α and τ solid solution phases of intermetallic structures. Microstructural analyses were performed using X-ray diffraction (XRD), optical microscope, and energy dispersive spectrometry (EDS) techniques. Test results show that the average grain size of the alloys decreased with the addition of Ti inclusions during the casting and solidification processes, and the smallest grain size was found to be 90 μm for the Al–6Mg–3Ti alloy. In addition, tensile properties of the Al–Mg–Ti alloys were initially improved and then worsened after the addition of higher concentrations of Ti. The highest tensile and hardness values of the alloys were Al–4Mg–2Ti (205 MPa) and Al–6Mg–3Ti (80 BHN). The primary reasons for having higher mechanical properties may be attributed to strengthening of the solid solution and refinement of the grain size and shape during the solidification process. For this study, the optimum concentrations of Ti and Mg added to the Al alloys were 4 and 2 wt.%, respectively. This study may be useful for field researchers to develop new classes of Al alloys for various industrial applications.

References

References
1.
Song
,
M.
,
Wu
,
Z.
, and
He
,
Y.
,
2008
, “
Effects of Yb on the Mechanical Properties and Microstructures of an Al–Mg Alloy
,”
Mater. Sci. Eng.: A
,
497
(
1–2
), pp.
519
523
.
2.
Wang
,
Z.
, and
Tian
,
R.
,
1989
,
Handbook of Aluminum Alloy and Processing
,
Central South University of Technology Publishing
,
Changsha, China
.
3.
Kaufman
,
J. G.
,
Rooy
,
E. L.
, and
Society
,
A. F.
,
2004
, “
Aluminum Alloy Castings: Properties, Processes, and Applications
,”
ASM International
,
Materials Park, OH
.
4.
Mirchandani
,
P.
,
Benn
,
R.
,
Heck
,
K.
,
Lee
,
E.
,
Chia
,
E.
, and
Kim
,
N.
,
1989
,
Light-Weight Alloys for Aerospace Applications
,
TMS
,
Warrendale, PA
, p.
33
.
5.
Frazier
,
W. E.
, and
Cook
,
J.
,
1989
, “
An X-Ray Diffraction Study of RST Al-Ti-V Alloys
,”
Scr. Metall.
,
23
(
1
), pp.
39
43
.
6.
Shih
,
M. H.
,
Yu
,
C. Y.
,
Kao
,
P. W.
, and
Chang
,
C. P.
,
2001
, “
Microstructure and Flow Stress of Copper Deformed to Large Plastic Strains
,”
Scr. Mater.
,
45
(
7
), pp.
793
799
.
7.
Hamana
,
D.
,
Nebti
,
S.
, and
Hamamda
,
S.
,
1990
, “
Effect of the Zirconium Addition on the Microstructure of Al + 8 wt.% Mg Alloy
,”
Scr. Metall. Mater.
,
24
(
11
), pp.
2059
2064
.
8.
Ding
,
X. P.
,
Cui
,
H.
,
Zhang
,
J. X.
,
Li
,
H. X.
,
Guo
,
M. X.
,
Lin
,
Z.
,
Zhuang
,
L. Z.
, and
Zhang
,
J. S.
,
2015
, “
The Effect of Zn on the Age Hardening Response in an Al–Mg–Si Alloy
,”
Mater. Des.
,
65
, pp.
1229
1235
.
9.
El-Rehim
,
A. F. A.
,
Sakr
,
M. S.
,
El-Sayed
,
M. M.
, and
El-Hafez
,
M. A.
,
2014
, “
Effect of Cu Addition on the Microstructure and Mechanical Properties of Al–30wt% Zn Alloy
,”
J. Alloys Compd.
,
607
(
0
), pp.
157
162
.
10.
Zhang
,
W.-w.
,
Lin
,
B.
,
Cheng
,
P.
,
Zhang
,
D.-t.
, and
Li
,
Y.-y.
,
2013
, “
Effects of Mn Content on Microstructures and Mechanical Properties of Al-5.0Cu-0.5Fe Alloys Prepared by Squeeze Casting
,”
Trans. Nonferrous Met. Soc. China
,
23
(
6
), pp.
1525
1531
.
11.
Pourkia
,
N.
,
Emamy
,
M.
,
Farhangi
,
H.
, and
Ebrahimi
,
S. H. S.
,
2010
, “
The Effect of Ti and Zr Elements and Cooling Rate on the Microstructure and Tensile Properties of a New Developed Super High-Strength Aluminum Alloy
,”
Mater. Sci. Eng.: A
,
527
(
20
), pp.
5318
5325
.
12.
Alipour
,
M.
,
Aghdam
,
B. G.
,
Rahnoma
,
H. E.
, and
Emamy
,
M.
,
2013
, “
Investigation of the Effect of Al–5Ti–1B Grain Refiner on Dry Sliding Wear Behavior of an Al–Zn–Mg–Cu Alloy Formed by Strain-Induced Melt Activation Process
,”
Mater. Des.
,
46
, pp.
766
775
.
13.
ASTM
,
2013
, “
Standard Test Methods for Determining Average Grain Size
,”
ASTM International
, West Conshohocken, PA, Standard No. E-112.
14.
ASTME
,
2012
, “
Standard Test Methods for Rockwell Hardness of Metallic Materials
,”
ASTM International
, West Conshohocken, PA, Standard No. E18-11.
15.
ASTM
,
2014
, “
Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)
,”
ASTM International
, West Conshohocken, PA, Standard No. B557M-14.
16.
Hayes
,
F. H.
,
Watson
,
A.
, and
Dobatkina
,
T.
,
2005
, “
Al-Mg-Ti (Aluminium—Magnesium—Titanium)
,”
Light Metal Systems. Part 3
,
G.
Effenberg
, and
S.
Ilyenko
, eds.,
Springer
,
Berlin
, pp.
1
4
.
17.
Butt
,
M. Z.
, and
Feltham
,
P.
,
1993
, “
Solid-Solution Hardening
,”
J. Mater. Sci.
,
28
(
10
), pp.
2557
2576
.
18.
Cisse
,
J.
,
Kerr
,
H.
, and
Bolling
,
G.
,
1974
, “
The Nucleation and Solidification of Al-Ti Alloys
,”
Metall. Trans.
,
5
(
3
), pp.
633
641
.
19.
Eisenreich
,
H.
, and
Pütter
,
H.
,
1954
, “
Magnesium-Titanium Ternary Systems
,”
Metall. internationale Fachzeitschrift
,
8
, pp.
624
625
.
20.
Schumacher
,
P.
, and
Greer
,
A. L.
,
1994
, “
Enhanced Heterogeneous Nucleation of α-Al in Amorphous Aluminium Alloys
,”
Mater. Sci. Eng.: A
,
181–182
, pp.
1335
1339
.
21.
Ding
,
W.
,
Xia
,
T.
, and
Zhao
,
W.
,
2014
, “
Performance Comparison of Al–Ti Master Alloys With Different Microstructures in Grain Refinement of Commercial Purity Aluminum
,”
Materials
,
7
(
5
), pp.
3663
3676
.
22.
Fang
,
D. R.
,
Duan
,
Q. Q.
,
Zhao
,
N. Q.
,
Li
,
J. J.
,
Wu
,
S. D.
, and
Zhang
,
Z. F.
,
2007
, “
Tensile Properties and Fracture Mechanism of Al–Mg Alloy Subjected to Equal Channel Angular Pressing
,”
Mater. Sci. Eng.: A
,
459
(
1–2
), pp.
137
144
.
23.
Kumar
,
G. S. V.
,
Murty
,
B. S.
, and
Chakraborty
,
M.
,
2005
, “
Development of Al–Ti–C Grain Refiners and Study of Their Grain Refining Efficiency on Al and Al–7Si Alloy
,”
J. Alloys Compd.
,
396
(
1–2
), pp.
143
150
.
24.
Zhang
,
Q.
,
Xiao
,
B. L.
, and
Ma
,
Z. Y.
,
2013
, “
In Situ Formation of Various Intermetallic Particles in Al–Ti–X(Cu, Mg) Systems During Friction Stir Processing
,”
Intermetallics
,
40
, pp.
36
44
.
25.
Ahmad
,
Z.
,
2001
, “
Mechanical Behavior and Fabrication Characteristics of Aluminum Metal Matrix Composite Alloys
,”
J. Reinf. Plast. Compos.
,
20
(
11
), pp.
921
944
.
26.
Kerimov
,
K. M.
, and
Dunaev
,
S. F.
,
1989
, “
The M2Mg3Al18 Phase in Al-Mg-Transition Metal Systems
,”
J. Less-Common Met.
,
153
(
2
), pp.
267
273
.
27.
Murty
,
B.
,
Kori
,
S.
, and
Chakraborty
,
M.
,
2002
, “
Grain Refinement of Aluminium and Its Alloys by Heterogeneous Nucleation and Alloying
,”
Int. Mater. Rev.
,
47
(
1
), pp.
3
29
.
28.
Easton
,
M.
, and
St John
,
D.
,
1999
, “
Grain Refinement of Aluminum Alloys: Part I. The Nucleant and Solute Paradigms—A Review of the Literature
,”
Metall. Mater. Trans. A
,
30
(
6
), pp.
1613
1623
.
29.
Sun
,
Y.
,
2006
, “
Phase-Field Simulation of Microporosity Formation in Solidification
,” Ph.D. thesis,
University of Iowa
,
Iowa City, IA
.
30.
Ebrahimi
,
S. H. S.
, and
Emamy
,
M.
,
2010
, “
Effects of Al–5Ti–1B and Al–5Zr Master Alloys on the Structure, Hardness and Tensile Properties of a Highly Alloyed Aluminum Alloy
,”
Mater. Des.
,
31
(
1
), pp.
200
209
.
31.
American Society for Metals
,
1973
, “
Metals Handbook Volume 8: Metallography, Structures and Phase Diagrams
,”
American Society for Metals
,
Novelty, OH
.
32.
Huskins
,
E. L.
,
Cao
,
B.
, and
Ramesh
,
K. T.
,
2010
, “
Strengthening Mechanisms in an Al–Mg Alloy
,”
Mater. Sci. Eng.: A
,
527
(
6
), pp.
1292
1298
.
33.
Kim
,
Y.-W.
,
1989
, “
Intermetallic Alloys Based on Gamma Titanium Aluminide
,”
JOM
,
41
(
7
), pp.
24
30
.
34.
Wang
,
E.
,
Gao
,
T.
,
Nie
,
J.
, and
Liu
,
X.
,
2014
, “
Grain Refinement Limit and Mechanical Properties of 6063 Alloy Inoculated by Al–Ti–C (B) Master Alloys
,”
J. Alloys Compd.
,
594
, pp.
7
11
.
35.
Misak
,
H. E.
,
Widener
,
C. A.
,
Burford
,
D.
, and
Asmatulu
,
R.
,
2014
, “
Fabrication and Characterization of Carbon Nanotube Nanocomposites Into 2024-T3 Al Substrates Via Friction Stir Welding Process
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
024501
.
36.
Prasad
,
D. S.
,
Shoba
,
C.
, and
Ramanaiah
,
N.
,
2014
, “
Investigations on Mechanical Properties of Aluminum Hybrid Composites
,”
J. Mater. Res. Technol.
,
3
(
1
), pp.
79
85
.
You do not currently have access to this content.