In this paper, a multiscale approach has been developed for investigating the rate-dependent viscoplastic behavior of polymer matrix composites (PMCs) with thermal residual stress effect. The finite-volume direct averaging micromechanics (FVDAM), which effectively predicts nonlinear response of unidirectional fiber reinforced composites, is incorporated with improved Bodner–Partom model to describe the viscoplastic behavior of PMCs. The new micromechanical model is then implemented into the classical laminate theory, enabling efficient and accurate analysis of multidirectional PMCs. The proposed multiscale theory not only predicts effective thermomechanical viscoplastic response of PMCs but also provides local fluctuations of fields within composite microstructures. The deformation behaviors of several unidirectional and multidirectional PMCs with various fiber configurations are extensively simulated at different strain rates, which show a good agreement with the experimental data found from the literature. Influence of thermal residual stress on the viscoplastic behavior of PMCs is closely related to fiber orientation. In addition, the thermal residual stress effect cannot be neglected in order to accurately describe the rate-dependent viscoplastic behavior of PMCs.

References

References
1.
Tavakol
,
B.
,
Roozbehjavan
,
P.
,
Ahmed
,
A.
,
Das
,
R.
,
Joven
,
R.
,
Koushyar
,
H.
,
Rodriguez
,
A.
, and
Minaie
,
B.
,
2013
, “
Prediction of Residual Stresses and Distortion in Carbon Fiber-Epoxy Composite Parts Due to Curing Process Using Finite Element Analysis
,”
J. Appl. Polym. Sci.
,
128
(
2
), pp.
941
950
.
2.
Parlevliet
,
P. P.
,
Bersee
,
H. E. N.
, and
Beukers
,
A.
,
2006
, “
Residual Stresses in Thermoplastic Composites—A Study of the Literature—Part I: Formation of Residual Stresses
,”
Composites Part A
,
37
(
11
), pp.
1847
1857
.
3.
Pindera
,
M.-J.
, and
Bansal
,
Y.
,
2007
, “
On the Micromechanics-Based Simulation of Metal Matrix Composite Response
,”
ASME J. Eng. Mater. Technol.
,
129
(
3
), p.
468
.
4.
Parlevliet
,
P. P.
,
Bersee
,
H. E. N.
, and
Beukers
,
A.
,
2007
, “
Residual Stresses in Thermoplastic Composites—A Study of the Literature. Part III: Effects of Thermal Residual Stresses
,”
Composites Part A
,
38
(
6
), pp.
1581
1596
.
5.
Ho
,
S.
, and
Lavernia
,
E. J.
,
1995
, “
Thermal Residual Stresses in Metal Matrix Composites: A Review
,”
Appl. Compos. Mater.
,
2
(
1
), pp.
1
30
.
6.
Yoon
,
K. J.
, and
Sun
,
C. T.
,
1991
, “
Characterization of Elastic-Viscoplastic Properties of an AS4/PEEK Thermoplastic Composite
,”
J. Compos. Mater.
,
25
(
10
), pp.
1277
1296
.
7.
Weeks
,
C. A.
, and
Sun
,
C. T.
,
1998
, “
Modeling Non-Linear Rate-Dependent Behavior in Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
58
(
3–4
), pp.
603
611
.
8.
Goldberg
,
R. K.
,
Roberts
,
G. D.
, and
Gilat
,
A.
,
2003
, “
Incorporation of Mean Stress Effects Into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites
,”
Composites Part B
,
34
(
2
), pp.
151
165
.
9.
Hsu
,
S. Y.
,
Vogler
,
T. J.
, and
Kyriakides
,
S.
,
1999
, “
Inelastic Behavior of an AS4/PEEK Composite Under Combined Transverse Compressionand Shear—Part II: Modeling
,”
Int. J. Plast.
,
15
(
8
), pp.
807
836
.
10.
Thiruppukuzhi
,
S. V.
, and
Sun
,
C. T.
,
1998
, “
Testing and Modeling High Strain Rate Behavior of Polymeric Composites
,”
Composites Part B
,
29
(
5
), pp.
535
546
.
11.
Guedes
,
R. M.
,
2009
, “
Viscoplastic Analysis of Fiber Reinforced Polymer Matrix Composites Under Various Loading Conditions
,”
Polym. Compos.
,
30
(
11
), pp.
1601
1610
.
12.
Huang
,
Z.-M.
,
2004
, “
A Bridging Model Prediction of the Ultimate Strength of Composite Laminates Subjected to Biaxial Loads
,”
Compos. Sci. Technol.
,
64
(
3–4
), pp.
395
448
.
13.
Huang
,
Z.-M.
,
2001
, “
Simulation of the Mechanical Properties of Fibrous Composites by the Bridging Micromechanics Model
,”
Composites Part A
,
32
(
2
), pp.
143
172
.
14.
Ye
,
J.
,
Qiu
,
Y.
,
Zhai
,
Z.
, and
Chen
,
X.
,
2015
, “
Strain Rate Influence on Nonlinear Response of Polymer Matrix Composites
,”
Polym. Compos.
,
36
(
5
), pp.
800
810
.
15.
Ye
,
J.
,
Qiu
,
Y.
,
Chen
,
X.
, and
Ma
,
J.
,
2015
, “
Initial and Final Failure Strength Analysis of Composites Based on a Micromechanical Method
,”
Compos. Struct.
,
125
, pp.
328
335
.
16.
Zhai
,
Z.
,
Chen
,
X.
,
He
,
Z.
,
Ye
,
J.
, and
Zhu
,
X.
,
2014
, “
Micromechanical Modeling on the Rate-Dependent Viscoplastic Behavior of Polymer Composites With Thermal Residual Stress Effect
,”
J. Reinf. Plast. Compos.
,
33
(
17
), pp.
1574
1589
.
17.
Kwon
,
Y. W.
, and
Park
,
M. S.
,
2013
, “
Versatile Micromechanics Model for Multiscale Analysis of Composite Structures
,”
Appl. Compos. Mater.
,
20
(
4
), pp.
673
692
.
18.
Jin
,
B. C.
, and
Pelegri
,
A. A.
,
2011
, “
Three-Dimensional Numerical Simulation of Random Fiber Composites With High Aspect Ratio and High Volume Fraction
,”
ASME J. Eng. Mater. Technol.
,
133
(
4
), p.
041014
.
19.
Ahn
,
J. H.
, and
Waas
,
A. M.
,
1999
, “
A Micromechanics-Based Finite Element Model for Compressive Failure of Notched Uniply Composite Laminates Under Remote Biaxial Loads
,”
ASME J. Eng. Mater. Technol.
,
121
(
3
), pp.
360
366
.
20.
Bansal
,
Y.
, and
Pindera
,
M. J.
,
2006
, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
,
22
(
5
), pp.
775
825
.
21.
Tu
,
W. Q.
, and
Pindera
,
M. J.
,
2014
, “
Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite-Volume Homogenization
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101005
.
22.
Tu
,
W. Q.
, and
Pindera
,
M. J.
,
2013
, “
Targeting the Finite-Deformation Response of Wavy Biological Tissues With Bio-Inspired Material Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
291
308
.
23.
Cavalcante
,
M. A. A.
, and
Pindera
,
M.-J.
,
2013
, “
Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations—Part I: Framework
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021005
.
24.
Cavalcante
,
M. A. A.
, and
Pindera
,
M.-J.
,
2013
, “
Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations—Part II: Results
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021006
.
25.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
,
2011
, “
Transient Finite-Volume Analysis of a Graded Cylindrical Shell Under Thermal Shock Loading
,”
Mech. Adv. Mater. Struct.
,
18
(
1
), pp.
53
67
.
26.
Chen
,
Q.
,
Chen
,
X.
,
Zhai
,
Z.
, and
Yang
,
Z.
,
2016
, “
A New and General Formulation of Three-Dimensional Finite-Volume Micromechanics for Particulate Reinforced Composites With Viscoplastic Phases
,”
Composites Part B
,
85
, pp.
216
232
.
27.
Pindera
,
M.-J.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Bansal
,
Y.
,
2009
, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Composites Part B
,
40
(
5
), pp.
349
378
.
28.
Fakri
,
N.
,
Azrar
,
L.
, and
El Bakkali
,
L.
,
2003
, “
Electroelastic Behavior Modeling of Piezoelectric Composite Materials Containing Spatially Oriented Reinforcements
,”
Int. J. Solids Struct.
,
40
(
2
), pp.
361
384
.
29.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
1998
, “
Micromechanics of Magnetoelectroelastic Composite Materials: Average Fields and Effective Behavior
,”
J. Intell. Mater. Syst. Struct.
,
9
(
6
), pp.
404
416
.
30.
Dunn
,
M. L.
,
1993
, “
Micromechanics of Coupled Electroelastic Composites: Effective Thermal Expansion and Pyroelectric Coefficients
,”
J. Appl. Phys.
,
73
(
10
), pp.
5131
5140
.
31.
Gattu
,
M.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
Parametric Finite-Volume Micromechanics of Uniaxial Continuously-Reinforced Periodic Materials With Elastic Phases
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031015
.
32.
Khatam
,
H.
, and
Pindera
,
M.-J.
,
2009
, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plast.
,
25
(
7)
, pp.
1386
1411
.
33.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
34.
Bodner
,
S. R.
, and
Partom
,
Y.
,
1975
, “
Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
385
389
.
35.
Goldberg
,
R. K.
,
Roberts
,
G. D.
, and
Gilat
,
A.
,
2005
, “
Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites
,”
J. Aerosp. Eng.
,
18
(
1
), pp.
18
27
.
36.
Levin
,
V. M.
,
1967
, “
On the Coefficients of Thermal Expansion of Heterogeneous Materials
,”
Mech. Solids
,
2
, pp.
58
61
.
37.
Huang
,
Z.-M.
, and
Zhou
,
Y.-X.
,
2012
,
Strength of Fibrous Composites
,
Springer Science and Business Media
,
Hangzhou, China
.
38.
Huang
,
Z. M.
,
2000
, “
Simulation of Inelastic Response of Multidirectional Laminates Based on Stress Failure Criteria
,”
Mater. Sci. Technol.
,
16
(
6
), pp.
692
698
.
You do not currently have access to this content.