Tensile flow behavior of 9Cr–2WVTa ferritic/martensitic (RAFM) steel in normalized-tempered condition has been studied based on Voce equation over the temperature range of 25–600 °C. Yield strength (YS) and ultimate tensile strength (UTS) decrease with increase in temperature. However, the elongation decreases with increase in temperature up to 400 °C and then increases beyond 400 °C. True stress–true plastic strain curves at all temperatures are adequately described by the Voce equation. While saturation stress (σs) decreases with temperature, the rate at which the stress approaches the saturation value (nV) increases with temperature. The variation of the stress increment up to saturation stress (σun) with temperature shows a plateau in the temperature range of 200–400 °C. Moreover, the product of σun and nVun·nV) is inversely proportional to the elongation. The relation of elongation to σun·nV can be described by a power law with the exponent of −1.63.

References

References
1.
Klueh
,
R. L.
, and
Nelson
,
A. T.
,
2007
, “
Ferritic/Martensitic Steels for Next-Generation Reactors
,”
J. Nucl. Mater.
,
371
(1–3), pp.
37
52
.
2.
Klueh
,
R. L.
,
2005
, “
Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors
,”
Int. Mater. Rev.
,
50
(
5
), pp.
287
310
.
3.
Klueh
,
R. L.
,
Alexander
,
D. J.
, and
Reith
,
M.
,
1999
, “
The Effect of Tantalum on the Mechanical Properties of a 9Cr-2W-0.25V-0.07Ta-0.1C Steel
,”
J. Nucl. Mater.
,
273
(
2
), pp.
146
154
.
4.
Hollomon
,
J. H.
,
1945
, “
Tensile Deformation
,”
Trans. AIME
,
162
, pp.
268
290
.
5.
Ludwik
,
P.
,
1909
,
Elements der Technologischen Mechanik
,
Verlag Von Julius Springer
,
Leipzig, Germany
.
6.
Swift
,
H. W.
,
1952
, “
Plastic Instability Under Plane Stress
,”
J. Mech. Phys. Solids
,
1
(
1
), pp.
1
18
.
7.
Ludwigson
,
D. C.
,
1971
, “
Modified Stress–Strain Relation for FCC Metals and Alloys
,”
Metall. Trans. A
,
2
(
10
), pp.
2825
2828
.
8.
Voce
,
E.
,
1948
, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
,
74
, pp.
537
562
.
9.
Voce
,
E.
,
1955
, “
A Practical Strain Hardening Function
,”
Metallurgia
,
51
, pp.
219
226
.
10.
Choudhary
,
B. K.
,
Rao Palaparti
,
D. P.
, and
Isaac Samuel
,
E.
,
2013
, “
Analysis of Tensile Stress–Strain and Work-Hardening Behavior in 9Cr-1Mo Ferritic Steel
,”
Metall. Mater. Trans. A
,
44A
, pp.
212
223
.
11.
Choudhary
,
B. K.
,
Christopher
,
J.
,
Rao Palaparti
,
D. P.
,
Isaac Samuel
,
E.
, and
Mathew
,
M. D.
,
2013
, “
Influence of Temperature and Post Weld Heat Treatment on Tensile Stress–Strain and Work Hardening Behaviour of Modified 9Cr–1Mo Steel
,”
Mater. Des.
,
52
, pp.
58
66
.
12.
Christopher
,
J.
,
Choudhary
,
B. K.
,
Isaac Samuel
,
E.
,
Srinivasana
,
V. S.
, and
Mathew
,
M. D.
,
2011
, “
Tensile Flow and Work Hardening Behaviour of 9Cr–1Mo Ferritic Steel in the Frame Work of Voce Relationship
,”
Mater. Sci. Eng. A
,
528
(
21
), pp.
6589
6595
.
13.
Choudhary
,
B. K.
, and
Rao Palaparti
,
D. P.
,
2012
, “
Comparative Tensile Flow and Work Hardening Behaviour of Thin Section and Forged Thick Section 9Cr–1Mo Ferritic Steel in the Framework of Voce Equation and Kocks–Mecking Approach
,”
J. Nucl. Mater.
,
430
(1–3), pp.
72
81
.
14.
Mathew
,
M. D.
,
Vanaja
,
J.
,
Laha
,
K.
,
Varaprasad Reddy
,
G.
,
Chandravathi
,
K. S.
, and
Bhanu Sankara Rao
,
K.
,
2011
, “
Tensile and Creep Properties of Reduced Activation Ferritic–Martensitic Steel for Fusion Energy Application
,”
J. Nucl. Mater.
,
417
(1–3), pp.
77
80
.
15.
Vanaja
,
F.
,
Laha
,
K.
,
Sam
,
S.
,
Nandagopal
,
M.
,
Panneer Selvi
,
S.
,
Mathew
,
M. D.
,
Jayakumar
,
T.
, and
Rajendra Kumar
,
E.
,
2012
, “
Influence of Strain Rate and Temperature on Tensile Properties and Flow Behaviour of a Reduced Activation Ferritic–Martensitic Steel
,”
J. Nucl. Mater.
,
424
(1–3), pp.
116
122
.
16.
Vanaja
,
F.
,
Laha
,
K.
,
Nandagopal
,
M.
,
Sam
,
S.
,
Mathew
,
M. D.
,
Jayakumar
,
T.
, and
Rajendra Kumar
,
E.
,
2013
, “
Effect of Tungsten on Tensile Properties and Flow Behaviour of RAFM Steel
,”
J. Nucl. Mater.
,
433
(1–3), pp.
412
418
.
17.
Tanigawa
,
H.
,
Klueh
,
R. L.
,
Hashimoto
,
N.
, and
Sokolov
,
M. A.
,
2009
, “
Hardening Mechanisms of Reduced Activation Ferritic/Martensitic Steels Irradiated at 300 °C
,”
J. Nucl. Mater.
,
386–388
, pp.
213
235
.
18.
Shen
,
Y. Z.
,
Kim
,
S. H.
,
Han
,
C. H.
,
Cho
,
H. D.
,
Ryu
,
W. S.
, and
Lee
,
C. B.
,
2008
, “
Vanadium Nitride Precipitate Phase in a 9% Chromium Steel for Nuclear Power Plant Applications
,”
J. Nucl. Mater.
,
374
(
3
), pp.
403
412
.
19.
Klueh
,
R. L.
, and
Vitek
,
J. M.
,
1991
, “
Tensile Properties of 9Cr-1MoVNb and 12Cr-1MoVW Steels Irradiated to 23 dPa at 390 to 550 °C
,”
J. Nucl. Mater.
,
182
, pp.
230
239
.
20.
Klueh
,
R. L.
,
1989
, “
Heat Treatment Behavior and Tensile Properties of Cr-W Steels
,”
Metall. Trans. A
,
20A
, pp.
463
470
.
21.
Choudhary
,
B. K.
,
Bhanu Sankara Rao
,
K.
,
Mannan
,
S. L.
, and
Kashyap
,
B. P.
,
1999
, “
Serrated Yielding in 9Cr–1Mo Ferritic Steel
,”
Mater. Sci. Technol.
,
15
(
7
), pp.
791
797
.
22.
Choudhary
,
B. K.
,
Srinvasan
,
V. S.
, and
Mathew
,
M. D.
,
2011
, “
Influence of Strain Rate and Temperature on Tensile Properties of 9Cr–1Mo Ferritic Steel
,”
Mater. High Temp.
,
28
(
2
), pp.
155
161
.
23.
Kashyap
,
B. P.
,
McTaggart
,
K.
, and
Tangri
,
K.
,
1988
, “
Study on the Substructure Evolution and Flow Behviour in Type 136L Stainless Steel Over the Temperature Range 21–900 °C
,”
Philos. Mag. A
,
57
(
1
), pp.
97
114
.
24.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain Hardening
,”
Acta Metall.
,
29
(
11
), pp.
1865
1875
.
25.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
(
1
), pp.
57
70
.
26.
Gottstein
,
G.
, and
Argon
,
A. S.
,
1987
, “
Dislocation Theory of Steady State Deformation and Its Approach in Creep and Dynamic Tests
,”
Acta Metall.
,
35
(6), pp.
1261
1271
.
You do not currently have access to this content.