This study was conducted to investigate the stress, strain, and strength ratio distributions in the composite flywheel rotor for high-energy density storage applications. Symmetric laminate design was used to avoid shear and extension–bending coupling and to minimize torsion coupling. The rotor studied consists of four anisotropic unidirectional plies. The continuity conditions of the radial stresses and displacements between plies were used to obtain a local stiffness matrix for each ply and develop the global stiffness matrix for the rotor due to the different ply orientations. The Tsai–Wu three-dimensional (3D) quadratic failure criterion in stress space was used to evaluate the strength ratio of the rings. Analysis was done for ply orientations between [±5 deg]S and [±85 deg]S. Three specific ply orientations were reported for discussion. The results show how the stress, strain, and safe rotational speed of the flywheel change as the ply orientations are varied. The circumferential stress was found to be the dominant stress. It increases as the ply angle increased in the circumferential direction while the axial stress decreased. Due to significant improvements in composite materials and technology, the results from this study will contribute to further development of the flywheel which has recently re-emerged as a promising application for energy storage.

References

References
1.
Kirk
,
J. A.
,
1977
, “
Flywheel Energy Storage—I: Basic Concepts
,”
Int. J. Mech. Sci.
,
19
(
4
), pp.
223
231
.
2.
Olszewski
,
M.
, and
O'Kain
,
D. U.
,
1986
, “
Advances in Flywheel Technology for Space Power Applications
,”
Intersociety Energy Conversion Engineering Conference
, San Diego, CA, Aug. 25–29, pp.
1823
1828
.
3.
Ribeiro
,
P. F.
,
Johnson
,
B. K.
,
Crow
,
M. L.
, and
Liu
,
Y.
,
2001
, “
Energy Storage Systems for Advanced Power
,”
Proc. IEEE
,
89
(
12
), pp.
1744
1756
.
4.
Rinde
,
J. A.
,
Chiao
,
T. T.
, and
Stone
,
R. G.
,
1976
, “
Composite Fiber Flywheel for Energy Storage
,”
8th National SAMPE Technical Conference
, Seattle, WA, Oct. 12–14, pp.
25
43
.
5.
Bolund
,
B.
,
Bernhohh
,
H.
, and
Leijon
,
M.
,
2007
, “
Flywheel Energy and Power Storage Systems
,”
Renewable Sustainable Energy Rev.
,
11
(
2
), pp.
235
258
.
6.
Brown
,
D. R.
, and
Chvala
,
W. D.
,
2005
, “
Flywheel Energy Storage: An Alternative to Batteries for UPS Systems
,”
Energy Eng.
,
102
(
5
), pp.
7
26
.
7.
Genta
,
G.
,
1985
,
Kinetic Energy Storage
,
Butterworths
,
London
, pp.
80
83
.
8.
Acebal
,
R.
,
1997
, “
Shape Factors for Rotating Machines
,”
IEEE Trans. Magn.
,
33
(
1
), pp.
753
762
.
9.
Acebal
,
R.
,
1999
, “
Energy Storage Capabilities of Rotating Machines Including a Comparison of Laminated Disk and Rim Composite Design
,”
IEEE Trans. Magn.
,
35
(
1
), pp.
317
322
.
10.
Takahashi
,
K.
,
Kitade
,
S.
, and
Morita
,
H.
,
2002
, “
Development of High Speed Composite Flywheel Rotors for Energy Storage Systems
,”
Adv. Compos. Mater.
,
11
(
1
), pp.
40
49
.
11.
Bitterly
,
J. G.
,
1998
, “
Flywheel Technology, Past, Present and 21st Century Projections
,”
IEEE Aerosp. Electron. Syst. Mag.
,
13
(
8
), pp.
13
16
.
12.
Tzeng
,
I.
,
Emerson
,
R.
, and
Moy
,
P.
,
2006
, “
Composite Flywheels for Energy Storage
,”
Compos. Sci. Technol.
,
66
(
14
), pp.
2520
2527
.
13.
Wild
,
P. M.
, and
Vickers
,
G. W.
,
1997
, “
Analysis of Filament-Wound Cylindrical Shells Under Centrifugal, Pressure and Axial Loading
,”
Composites, Part A
,
28
(
1
), pp.
47
55
.
14.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
,
2001
, “
Analysis of Multi-Layered Filament-Wound Composite Pipes Under Internal Pressure
,”
Compos. Struct.
,
53
(
4
), pp.
483
491
.
15.
Bakaiyan
,
H.
,
Hosseini
,
H.
, and
Ameri
,
E.
,
2009
, “
Analysis of Multi-Layered Filament-Wound Composite Pipes Under Combined Internal Pressure and Thermomechanical Loading With Thermal Variations
,”
Compos. Struct.
,
88
(
4
), pp.
532
541
.
16.
Ansari
,
R.
,
Alisafaei
,
F.
, and
Ghaedi
,
P.
,
2010
, “
Dynamic Analysis of Multi-Layered Filament-Wound Composite Pipes Subjected to Cyclic Internal Pressure and Cyclic Temperature
,”
Compos. Struct.
,
92
(
5
), pp.
1100
1109
.
17.
Christensen
,
R. M.
, and
Wu
,
E. M.
,
1977
, “
Optimal Design of Anisotropic (Fiber-Reinforced) Flywheels
,”
J. Compos. Mater.
,
11
(
4
), pp.
395
404
.
18.
Metwalli
,
S. M.
,
Shawki
,
G. S. A.
, and
Sharobeam
,
M. H.
,
1983
, “
Optimum Design of Variable-Material Flywheels
,”
J. Mech. Transm. Autom. Des.
,
105
(
2
), pp.
249
253
.
19.
Georgian
,
J. C.
,
1989
, “
Optimum Design of Variable Composite Flywheel
,”
J. Compos. Mater.
,
23
(1), pp.
2
10
.
20.
Arvin
,
A. C.
, and
Bakis
,
C. E.
,
2006
, “
Optimal Design of Press-Fitted Filament Wound Composite Flywheel Rotors
,”
Compos. Struct.
,
72
(
1
), pp.
47
57
.
21.
Wang
,
W.
,
He
,
L.
,
Zhao
,
X. F.
, and
Li
,
G. X.
,
2012
, “
Design of Hybrid Composite Multilayer Rim of High Speed Energy Storage Flywheels
,”
10th Asia-Pacific Conference on Materials Processing
(
APCMP 2012
),
Jinan
,
China
, June 14–17, Vol.
500
, pp.
603
607
.
22.
Ha
,
S. K.
,
Kim
,
D.
, and
Sung
,
T.
,
2001
, “
Optimum Design of Multi-Ring Composite Flywheel Rotor Using a Modified Generalized Plane Strain Assumption
,”
Int. J. Mech. Sci.
,
43
(4), pp.
993
1007
.
23.
Tahani
,
M.
,
Nosier
,
A.
, and
Zebarjad
,
S. M.
,
2005
, “
Deformation and Stress Analysis of Circumferentially Fiber-Reinforced Composite Disks
,”
Int. J. Solids Struct.
,
42
(
9–10
), pp.
2741
2754
.
24.
Nie
,
G. J.
,
Zhong
,
Z.
, and
Batra
,
R. C.
,
2011
, “
Material Tailoring for Orthotropic Elastic Rotating Disks
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
406
414
.
25.
Varatharajoo
,
R.
,
Mustapha
,
F.
,
Majid
,
D. L. A. A.
,
Zahrai
,
R.
, and
Kahle
,
R.
,
2011
, “
Critical Speeds for Carbon/Epoxy Composite Rotors in Spacecraft Energy Storage Applications
,”
Key Eng. Mater.
,
471–472
, pp.
37
42
.
26.
Ha
,
S. K.
, and
Kim
,
H.
,
2003
, “
Measurement and Prediction of Process-Induced Residual Strains in Thick Wound Composite Rings
,”
J. Compos. Mater.
,
37
(
14
), pp.
1223
1237
.
27.
Ha
,
S. K.
,
Yoon
,
Y. B.
, and
Han
,
S. C.
,
2000
, “
Effect of Material Properties on the Total Stored Energy of a Hybrid Flywheel Rotor
,”
Arch. Appl. Mech.
,
70
(
8
), pp.
571
584
.
28.
Tsai
,
S. W.
,
1988
,
Composite Design
,
4th ed.
,
Think Composites
,
Dayton, OH
.
29.
Peters
,
S. T.
, ed.,
1998
,
Handbook of Composites
,
Chapman & Hall
,
London
.
You do not currently have access to this content.