Flexible polyethylene foam is used in many engineering applications. It exhibits nonlinear and viscoelastic behavior which makes it difficult to model. To date, several models have been developed to characterize the complex behavior of foams. These attempts include the computationally intensive microstructural models to continuum models that capture the macroscale behavior of the foam materials. In this research, a nonlinear viscoelastic model, which is an extension to previously developed models, is proposed and its ability to capture foam response in uniaxial compression is investigated. It is hypothesized that total stress can be decomposed into the sum of a nonlinear elastic component, modeled by a higher-order polynomial, and a nonlinear hereditary type viscoelastic component. System identification procedures were developed to estimate the model parameters using uniaxial cyclic compression data from experiments conducted at six different rates. The estimated model parameters for individual tests were used to develop a model with parameters that are a function of strain rates. The parameter estimation technique was modified to also develop a comprehensive model which captures the uniaxial behavior of all six tests. The performance of this model was compared to that of other nonlinear viscoelastic models.

References

References
1.
Saha
,
M. C.
,
Mahfuz
,
H.
,
Chakravarty
,
U. K.
,
Uddin
,
M.
,
Kabir
,
E.
, and
Jeelani
,
S.
,
2005
, “
Effect of Density, Microstructure, and Strain Rate on Compression Behavior of Polymeric Foams
,”
Mater. Sci. Eng.
,
406
(
1
), pp.
328
336
.
2.
Walter
,
T. R.
,
Richards
,
A. W.
, and
Subhash
,
G.
,
2009
, “
A Unified Phenomenological Model for Tensile and Compressive Response of Polymeric Foams
,”
ASME J. Eng. Mater. Technol.
,
131
(
1
), p.
011009
.
3.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University
,
Cambridge, UK
.
4.
Mills
,
N. J.
, and
Gilchrist
,
A.
,
2000
, “
High Strain Extension of Open-Cell Foams
,”
ASME J. Eng. Mater. Technol.
,
122
(
1
), pp.
67
73
.
5.
Milles
,
N. J.
, and
Gilchrist
,
A.
,
2000
, “
Modeling the Indentation of Low Density Polymer Foams
,”
Cell. Polym.
,
19
(
6
), pp.
389
412
.
6.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London: Math. Phys. Sci.
,
326
(
1567
), pp.
565
584
.
7.
Hills
,
R.
,
1978
, “
Aspects of Invariance in Solid Mechanics
,”
Adv. Appl. Mech.
,
18
(
1
), pp.
1
75
.
8.
Shen
,
Y.
,
Golnaraghi
,
F.
, and
Plumtree
,
A.
,
2001
, “
Modeling Compressive Cyclic Stress-Strain Behavior of Structural Foam
,”
Int. J. Fatigue
,
23
(
6
), pp.
491
497
.
9.
Ouellet
,
S.
,
Cronin
,
D.
, and
Worswick
,
M.
,
2006
, “
Compressive Response of Polymeric Foams Under Quasi-Static, Medium and High Strain Rate Conditions
,”
Polym. Test.
,
25
(
6
), pp.
731
743
.
10.
Nagy
,
A.
,
Ko
,
W. L.
, and
Lindholm
,
U. S.
,
1964
, “
Mechanical Behavior of Foamed Materials Under Dynamic Compression
,”
J. Cell. Plast.
,
10
(
6
), pp.
127
134
.
11.
Liu
,
Q.
, and
Subhash
,
G.
,
2004
, “
A Phenomenological Constitutive model for Foams Under Large Deformations
,”
Polym. Eng. Sci.
,
44
(
3
), pp.
463
473
.
12.
Banks
,
H. T.
,
Potter
,
L. K.
, and
Zhang
,
Y.
,
1997
, “
Stress-Strain Laws for Carbon Black and Silicon Filled Elastomers
,” Thirty Sixth
IEEE
Conference on Decision and Control
, San Diego, CA, December, pp.
3227
3732
.
13.
Banks
,
H. T.
,
Pinter
,
G. A.
,
Potter
,
L. K.
,
Gaitens
,
M. J.
, and
Yanyo
,
L. C.
,
1999
, “
modeling of Nonlinear Hysteresis in Elastomers Under Uniaxial Tension
,”
J. Intell. Mater. Syst. Struct.
,
10
(
2
), pp.
116
134
.
14.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
15.
Suvorova
,
J. V.
,
Ohlson
,
N. G.
, and
Alexeeva
,
S. I.
,
2003
, “
An Approach to the Description of Time-Dependent Materials
,”
Mater. Des.
,
24
(
4
), pp.
293
297
.
16.
White
,
S. W.
,
Kim
,
S. K.
,
Bajaj
,
A. K.
,
Davies
,
P.
,
Showers
,
D. K.
, and
Liedtke
,
P. E.
,
2000
, “
Experimental Techniques and Identification of Nonlinear and Viscoelastic Properties of Flexible Polyurethane Foam
,”
Nonlinear Dyn.
,
22
(
3
), pp.
281
313
.
17.
Singh
,
R.
,
2001
, “
Dynamic modeling of Polyurethane Foam and Development of System Identification Methodologies
,” Masters thesis, Purdue University, West Lafayette, IN.
18.
Singh
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2001
, “
Nonlinear modeling and Identification of the Dynamic Behavior of Polyurethane Foam
,” ASME Paper No.DETC01/DAC-1234.
19.
Deng
,
R.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2003
, “
Flexible Polyurethane Foam modeling and Identification of Viscoelastic Parameters for Automotive Seating Applications
,”
J. Sound Vib.
,
262
(
3
), pp.
391
417
.
20.
Widdle
,
R. D.
,
2005
, “
Measurement and modeling of the Mechanical Properties of Polyurethane Foam
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
21.
Puri
,
T.
,
2004
, “
Seat-Occupant modeling and Experiment Verification for H-point Prediction in All-Foam Seats
,” Masters thesis, Purdue University, West Lafayette, IN.
22.
Yang
,
L. M.
, and
Shim
,
V. P. W.
,
2004
, “
A Visco-Hyperelastic Constitutive Description of Elastomeric Foam
,”
Int. J. Impact Eng.
,
30
(
8
), pp.
1099
1110
.
23.
Anani
,
Y.
, and
Alizadeh
,
Y.
,
2011
, “
Visco-Hyperelastic Constitutive Law for modeling of Foam's Behavior
,”
Mater. Des.
,
32
(
5
), pp.
2940
2948
.
24.
Yang
,
L. M.
,
Shim
,
V. P. W.
, and
Lim
,
C. T.
,
2000
, “
A Visco-Hyperelastic Approach to modeling the Constitutive Behavior of Rubber
,”
Int. J. Impact Eng.
,
24
(
6
), pp.
545
560
.
25.
Sundaram
,
V.
,
2014
, “
Measurement of Experimental Responses of Polyurethane and CONOF Foams and Development of System Identification to Estimate Polyurethane Foam Parameters From Experimental Impulse Responses
,” Masters thesis, Purdue University, West Lafayette, IN.
26.
Widdle
,
R. D.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2008
, “
Measurement of the Poisson's Ratio of Flexible Polyurethane Foam and Its Influence on a Uniaxial Compression model
,”
Int. J. Eng. Sci.
,
46
(
1
), pp.
31
49
.
27.
Deshmukh
,
Y.
,
2010
, “
Measurement of Foam Properties and modeling of Layered Foam Systems
,”
Masters thesis
, Purdue University, West Lafayette, IN.
28.
Ljung
,
L.
,
1999
,
System Identification: Theory For the User
,
2nd ed.
,
Wiley
,
Englewood Cliffs, NJ
.
29.
Schilling
,
R. J.
, and
Harris
,
S. L.
,
2004
,
Fundamentals of Digital Signal Processing Using matlab
,
CL-Engineering
,
Stamford, CT
.
30.
Azizi
,
Y.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2012
, “
Identification and Investigation of Nonlinear Viscoelastic models of Flexible Polyurethane Foam From Uniaxial Compression Data
,”
ASME
Paper No. IMECE2012-88190.
You do not currently have access to this content.