Numerical simulations of 304 austenitic stainless steel (SS304) cyclic and ratcheting responses are performed using polycrystalline plasticity models. On the basis of the polycrystalline model of Cailletaud and Pilvin (1994, “Utilisation de modèles polycristallins pour le calcul par éléments finis,” Rev. Eur. Élém. Finis, 3, pp. 515–541), a modification of the β rule that operates the transition between the macroscopic level and the grain level is proposed. The improvement of the transition rule is obtained by introducing a “memory variable” at the grain level, so that a better description of the local stress–strain behavior is provided. This new feature is calibrated by means of previous simulations using finite element (FE) aggregate models. The results of the updated polycrystalline plasticity model are in good agreement with the macroscopic responses.

References

1.
Krishna
,
S.
,
Hassan
,
T.
,
Ben Naceur
,
I.
,
Saï
,
I.
, and
Cailletaud
,
G.
,
2009
, “
Macro Versus Micro-Scale Constitutive Models in Simulating Proportional and Nonproportional Cyclic and Ratcheting Responses of Stainless Steel 304
,”
Int. J. Plast.
,
25
(
10
), pp.
1910
1949
.
2.
Cailletaud
,
G.
, and
Pilvin
,
P.
,
1994
, “
Utilisation de modèles polycristallins pour le calcul par éléments finis
,”
Rev. Eur. Élém. Finis
,
3
, pp.
515
541
.
3.
Megahed
,
M.
,
1984
, “
Kinematic Hardening Analysis of Ratchet Strain in the Pulley Test
,”
Int. J. Mech. Sci.
,
26
, pp.
649
659
.
4.
Ohno
,
N.
,
1998
, “
Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting
,”
Int. J. Mech. Sci.
,
40
, pp.
251
261
.
5.
Kang
,
G.
,
Gao
,
Q.
, and
Yang
,
X.
,
2002
, “
Uniaxial Cyclic Ratchetting and Plastic Flow Properties of SS304 Stainless Steel at Room and Elevated Temperatures
,”
Mech. Mater.
,
34
(
3
), pp.
145
159
.
6.
Yoshida
,
F.
, and
Uemori
,
T.
,
2003
, “
A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation
,”
Int. J. Mech. Sci.
,
45
(
10
), pp.
1687
1702
.
7.
Vincent
,
L.
,
Calloch
,
S.
, and
Marquis
,
D.
,
2004
, “
A General Cyclic Plasticity Model Taking Into Account Yield Surface Distortion for Multiaxial Ratchetting
,”
Int. J. Plast.
,
20
(
10
), pp.
1817
1850
.
8.
Abdel-Karim
,
M.
,
2005
, “
Numerical Integration Method for Kinematic Hardening Rules With Partial Activation of Dynamic Recovery Term
,”
Int. J. Plast.
,
21
(
7
), pp.
1303
1321
.
9.
Kang
,
G.
,
Kan
,
Q.
,
Zhang
,
J.
, and
Sun
,
Y.
,
2006
, “
Time-Dependent Ratchetting Experiments of SS304 Stainless Steel
,”
Int. J. Plast.
,
22
(
5
), pp.
858
894
.
10.
Saï
,
K.
, and
Cailletaud
,
G.
,
2007
, “
Multi-Mechanism Models for the Description of Ratchetting: Effect of the Scale Transition Rule and of the Coupling Between Hardening Variables
,”
Int. J. Plast.
,
23
(
9
), pp.
1589
1617
.
11.
Kang
,
G.
,
2008
, “
Ratchetting: Recent Progresses in Phenomenon Observation, Constitutive Modeling and Application
,”
Int. J. Fract.
,
30
(8), pp.
1448
1472
.
12.
Chen
,
G.
,
Shan
,
S.-C.
,
Chen
,
X.
, and
Yuan
,
H.
,
2009
, “
Ratcheting and Fatigue Properties of the High-Nitrogen Steel X13CrMnMoN18-14-3 Under Cyclic Loading
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
572
578
.
13.
Taleb
,
L.
, and
Cailletaud
,
G.
,
2010
, “
An Updated Version of the Multimechanism Model for Cyclic Plasticity
,”
Int. J. Plast.
,
26
(
6
), pp.
859
874
.
14.
Saï
,
K.
,
Taleb
,
L.
,
Guesmi
,
F.
, and
Cailletaud
,
G.
,
2014
, “
Multi-Mechanism Modeling of Proportional and Non-Proportional Ratchetting of Stainless Steel 304
,”
Acta Mech.
,
225
(
11
), pp.
3265
3283
.
15.
Evrard
,
P.
,
Aubin
,
V.
,
Pilvin
,
P.
,
Degallaix
,
S.
, and
Kondo
,
D.
,
2008
, “
Implementation and Validation of a Polycrystalline Model for a Bi–Phased Steel Under Non-Proportional Loading Paths
,”
Mech. Res. Commun.
,
35
(
5
), pp.
336
343
.
16.
Cailletaud
,
G.
, and
Saï
,
K.
,
2008
, “
A Polycrystalline Model for the Description of Ratchetting: Effect of Intergranular and Intragranular Hardening
,”
Mater. Sci. Eng. A
,
480
, pp.
24
39
.
17.
Boudifa
,
M.
,
Saanouni
,
K.
, and
Chaboche
,
J.
,
2009
, “
A Micromechanical Model for Inelastic Ductile Damage Prediction in Polycrystalline Metals for Metal Forming
,”
Int. J. Mech. Sci.
,
51
(
6
), pp.
453
464
.
18.
Hlilou
,
A.
,
Ben Naceur
,
I.
,
Saï
,
K.
,
Forest
,
S.
,
Gérard
,
C.
, and
Cailletaud
,
G.
,
2009
, “
Generalization of the Polycrystalline β–Model: Finite Element Assessment and Application to Softening Material Behavior
,”
Comput. Mater. Sci.
,
45
(
4
), pp.
1104
1112
.
19.
Abdeljaoued
,
D.
,
Ben Naceur
,
I.
,
Saï
,
K.
, and
Cailletaud
,
G.
,
2009
, “
A New Polycrystalline Plasticity Model to Improve Ratchetting Strain Prediction
,”
Mech. Res. Commun.
,
36
(
3
), pp.
309
315
.
20.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratcheting of Cyclically Hardening and Softening Materials: I. Uniaxial Behavior
,”
Int. J. Plast.
,
10
(
2
), pp.
149
184
.
21.
Méric
,
L.
,
Poubanne
,
P.
, and
Cailletaud
,
G.
,
1991
, “
Single Crystal Modeling for Structural Calculations. Part 1: Model Presentation
,”
ASME J. Eng. Mater. Technol.
,
113
(
1
), pp.
162
170
.
22.
Molinari
,
A.
,
Ahzi
,
S.
, and
Kouddane
,
R.
,
1997
, “
On the Self-Consistent Modeling of Elastic-Plastic Behavior of Polycrystals
,”
Mech. Mater.
,
26
(
1
), pp.
43
62
.
23.
Hill
,
R.
,
1965
, “
Continuum Micro-Mechanisms of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
(
2
), pp.
89
101
.
24.
Berveiller
,
M.
, and
Zaoui
,
A.
,
1979
, “
An Extension of the Self-Consistent Scheme to Plastically-Flowing Polycrystals
,”
J. Mech. Phys. Solids
,
26
(5–6), pp.
325
344
.
25.
Cailletaud
,
G.
,
Forest
,
S.
,
Jeulin
,
D.
,
Feyel
,
F.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Quilici
,
S.
,
2003
, “
Some Elements of Microstructural Mechanics
,”
Comput. Mater. Sci.
,
27
(
3
), pp.
351
374
.
26.
Saï
,
K.
,
Cailletaud
,
G.
, and
Forest
,
S.
,
2006
, “
Micro-Mechanical Modeling of the Inelastic Behavior of Directionally Solidified Materials
,”
Mech. Mater.
,
38
(
3
), pp.
203
217
.
27.
Martin
,
G.
,
Ochoa
,
N.
,
Saï
,
K.
,
Hervé-Luanco
,
E.
, and
Cailletaud
,
G.
,
2014
, “
A Multiscale Model for the Elastoviscoplastic Behavior of Directionally Solidified Alloys: Application to FE Structural Computations
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1175
1187
.
28.
Dick
,
T.
, and
Cailletaud
,
G.
,
2006
, “
Fretting Modelling With a Crystal Plasticity Model of Ti6Al4V
,”
Comput. Mater. Sci.
,
38
(
1
), pp.
113
125
.
29.
Besson
,
J.
,
Leriche
,
R.
,
Foerch
,
R.
, and
Cailletaud
,
G.
,
1998
, “
Object-Oriented Programming Applied to the Finite Element Method. Part II. Application to Material Behaviors
,”
Rev. Eur. Élém. Finis
,
7
(5), pp.
567
588
.
30.
Stoer
,
J.
,
1985
, “
Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs
,”
Computational Mathematical Programming
(NATO ASI Series),
K.
Schittkowski
, ed., Vol.
15
,
Springer Verlag
,
Berlin
.
You do not currently have access to this content.