The hot flow stress of a typical stainless steel was modeled by the Hollomon equation, a modified form of the Hollomon equation, and another modified form based on the Fields–Backofen equation. The coupled effect of the deformation temperature and strain rate was also taken into account in the proposed formulae by consideration of the Zener–Hollomon parameter or dependency of the constants on temperature. The modified Fields–Backofen equation was found to be appropriate for prediction of flow stress, in which the incorporation of peak strain and consideration of temperature dependencies of the strain rate sensitivity and the stress coefficient were found to be beneficial. Moreover, the simplicity of the proposed model justifies its applicability for expressing hot flow stress characterizing dynamic recrystallization (DRX).

References

1.
Anand
,
L.
,
1982
, “
Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures
,”
ASME J. Eng. Mater. Technol.
,
104
(
1
), pp.
12
17
.
2.
Mirzadeh
,
H.
,
2014
, “
Constitutive Analysis of Mg–Al–Zn Magnesium Alloys During Hot Deformation
,”
Mech. Mater.
,
77
, pp.
80
85
.
3.
Spigarelli
,
S.
, and
El Mehtedi
,
M.
,
2014
, “
A New Constitutive Model for the Plastic Flow of Metals at Elevated Temperatures
,”
J. Mater. Eng. Perform.
,
23
(
2
), pp.
658
665
.
4.
Mohamadizadeh
,
A.
,
Zarei-Hanzaki
,
A.
,
Abedi
,
H. R.
,
Mehtonen
,
S.
, and
Porter
,
D.
,
2015
, “
Hot Deformation Characterization of Duplex Low-Density Steel Through 3D Processing Map Development
,”
Mater. Charact.
,
107
, pp.
293
301
.
5.
Lin
,
Y. C.
,
Chen
,
X. M.
,
Wen
,
D. X.
, and
Chen
,
M. S.
,
2014
, “
A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy
,”
Comput. Mater. Sci.
,
83
, pp.
282
289
.
6.
Mirzadeh
,
H.
,
2015
, “
A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
4027
4037
.
7.
Lin
,
Y. C.
, and
Chen
,
X.-M.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
.
8.
Gronostajski
,
Z.
,
2000
, “
The Constitutive Equations for FEM Analysis
,”
J. Mater. Process. Technol.
,
106
, pp.
40
44
.
9.
Lin
,
Y. C.
,
He
,
M.
,
Zhou
,
M.
,
Wen
,
D. X.
, and
Chen
,
J.
,
2015
, “
New Constitutive Model for Hot Deformation Behaviors of Ni-Based Superalloy Considering the Effects of Initial δ Phase
,”
J. Mater. Eng. Perform.
,
24
(
9
), pp.
3527
3538
.
10.
Cheng
,
Y. Q.
,
Zhang
,
H.
,
Chen
,
Z. H.
, and
Xian
,
K. F.
,
2008
, “
Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation
,”
J. Mater. Process. Technol.
,
208
, pp.
29
34
.
11.
Mirzadeh
,
H.
,
2015
, “
Quantification of the Strengthening Effect of Reinforcements During Hot Deformation of Aluminum-Based Composites
,”
Mater. Des.
,
65
, pp.
80
82
.
12.
Lin
,
Y. C.
,
Chen
,
M. S.
, and
Zhong
,
J.
,
2008
, “
Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel
,”
Comput. Mater. Sci.
,
42
(
3
), pp.
470
477
.
13.
Puchi Cabrera
,
E. S.
,
2001
, “
A Constitutive Description of Aluminum-1% Magnesium Alloy Deformed Under Hot-Working Conditions
,”
ASME J. Eng. Mater. Technol.
,
123
(
3
), pp.
301
308
.
14.
Mandal
,
S.
,
Sivaprasad
,
P. V.
, and
Venugopal
,
S.
,
2007
, “
Capability of a Feed-Forward Artificial Neural Network to Predict the Constitutive Flow Behavior of as Cast 304 Stainless Steel Under Hot Deformation
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
242
247
.
15.
Mirzadeh
,
H.
,
Roostaei
,
M.
,
Parsa
,
M. H.
, and
Mahmudi
,
R.
,
2015
, “
Rate Controlling Mechanisms During Hot Deformation of Mg–3Gd–1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning
,”
Mater. Des.
,
68
, pp.
228
231
.
16.
Lin
,
Y. C.
,
Wen
,
D. X.
,
Deng
,
J.
,
Liu
,
G.
, and
Chen
,
J.
,
2014
, “
Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy
,”
Mater. Des.
,
59
, pp.
115
123
.
17.
Quan
,
G.
,
Tong
,
Y.
,
Luo
,
G.
, and
Zhou
,
J.
,
2010
, “
A Characterization for the Flow Behavior of 42CrMo Steel
,”
Comput. Mater. Sci.
,
50
(
1
), pp.
167
171
.
18.
Lin
,
Y. C.
,
Li
,
L. T.
, and
Jiang
,
Y. Q.
,
2012
, “
A Phenomenological Constitutive Model for Describing Thermo-Viscoplastic Behavior of Al–Zn–Mg–Cu Alloy Under Hot Working Condition
,”
Exp. Mech.
,
52
(
8
), pp.
993
1002
.
19.
Xu
,
W.
,
Zou
,
M.
, and
Zhang
,
L.
,
2014
, “
Constitutive Analysis to Predict the Hot Deformation Behavior of 34CrMo4 steel With an Optimum Solution Method for Stress Multiplier
,”
Int. J. Pressure Vessels Piping
,
123–124
, pp.
70
76
.
20.
Mirzadeh
,
H.
,
Cabrera
,
J. M.
, and
Najafizadeh
,
A.
,
2011
, “
Constitutive Relationships for Hot Deformation of Austenite
,”
Acta Mater.
,
59
(
16
), pp.
6441
6448
.
21.
Hollomon
,
J. H.
,
1945
, “
Tensile Deformation
,”
Trans. AIME
,
162
, pp.
268
290
.
22.
Fields
,
D. S.
, and
Backofen
,
W. A.
,
1957
, “
Determination of Strain Hardening Characteristics by Torsion Testing
,”
Proc. Am. Soc. Test. Mater.
,
57
, pp.
1259
1272
.
23.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistic
, The Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
24.
Mirzadeh
,
H.
,
2015
, “
Constitutive Modeling and Prediction of Hot Deformation Flow Stress Under Dynamic Recrystallization Conditions
,”
Mech. Mater.
,
85
, pp.
66
79
.
25.
Akbari
,
Z.
,
Mirzadeh
,
H.
, and
Cabrera
,
J. M.
,
2015
, “
A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation
,”
Mater. Des.
,
77
, pp.
126
131
.
26.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.
27.
McQueen
,
H. J.
, and
Ryan
,
N. D.
,
2002
, “
Constitutive Analysis in Hot Working
,”
Mater. Sci. Eng. A
,
322
, pp.
43
63
.
28.
Mirzadeh
,
H.
, and
Najafizadeh
,
A.
,
2010
, “
Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization
,”
Mater. Des.
,
31
(
3
), pp.
1174
1179
.
29.
Poliak
,
E. I.
, and
Jonas
,
J. J.
,
1996
, “
A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization
,”
Acta Mater.
,
44
(
1
), pp.
127
136
.
30.
Mirzadeh
,
H.
,
2015
, “
Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches
,”
J. Mater. Eng. Perform.
,
24
(
3
), pp.
1095
1099
.
31.
Sellars
,
C. M.
, and
McTegart
,
W. J.
,
1966
, “
On the Mechanism of Hot Deformation
,”
Acta Metall.
,
14
(
9
), pp.
1136
1138
.
32.
Mirzadeh
,
H.
,
2015
, “
Constitutive Behaviors of Magnesium and Mg–Zn–Zr Alloy During Hot Deformation
,”
Mater. Chem. Phys.
,
152
, pp.
123
126
.
33.
Mirzadeh
,
H.
,
Cabrera
,
J. M.
,
Prado
,
J. M.
, and
Najafizadeh
,
A.
,
2011
, “
Hot Deformation Behavior of a Medium Carbon Microalloyed Steel
,”
Mater. Sci. Eng. A
,
528
, pp.
3876
3882
.
34.
Mirzadeh
,
H.
,
2014
, “
A Comparative Study on the Hot Flow Stress of Mg–Al–Zn Magnesium Alloys Using a Simple Physically-Based Approach
,”
J. Magnesium Alloys
,
2
(
3
), pp.
225
229
.
35.
Mirzadeh
,
H.
,
2015
, “
Physically Based Constitutive Description of OFHC Copper at Hot Working Conditions
,”
Kovove Mater.
,
53
, pp.
105
111
.
36.
Mirzadeh
,
H.
,
2015
, “
Simple Physically-Based Constitutive Equations for Hot Deformation of 2024 and 7075 Aluminum Alloys
,”
Trans. Nonferrous Met. Soc. China
,
25
(
5
), pp.
1614
1618
.
37.
Saadatkia
,
S.
,
Mirzadeh
,
H.
, and
Cabrera
,
J. M.
,
2015
, “
Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels
,”
Mater. Sci. Eng. A
,
636
, pp.
196
202
.
38.
Cabrera
,
J. M.
,
Al Omar
,
A.
,
Jonas
,
J. J.
, and
Prado
,
J. M.
,
1997
, “
Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions
,”
Metall. Mater. Trans. A
,
28
(
11
), pp.
2233
2244
.
39.
Langdon
,
T. G.
,
2005
, “
An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity
,”
Mater. Trans.
,
46
(
9
), pp.
1951
1956
.
40.
Mukherjee
,
A. K.
,
2002
, “
An Examination of the Constitutive Equations for Elevated Temperature Plasticity
,”
Mater. Sci. Eng. A
,
322
, pp.
1
22
.
You do not currently have access to this content.