Computer simulation of mechanical behavior of discontinuously reinforced composites containing randomly oriented short-fibers/whiskers presents an attractive opportunity for reduction of the number of experiments and resources required for microstructure design of such advanced materials. It is desirable to perform such simulations using microstructure model that accounts for randomness in angular orientations and locations of the short fibers/whiskers. In this contribution, a methodology is presented for efficient simulation of the required microstructural model through modification of well-known random sequential adsorption (RSA) algorithm for microstructure simulation through its application to the microstructure of Mg–alloy matrix composite containing randomly oriented short carbon fibers. The modified RSA algorithm enhances accuracy and efficiency of the complex geometric details of the randomly oriented short-fiber reinforced composite microstructure. Simulated microstructural model of composite is implemented in abaqus to simulate the mechanical response of the Mg–matrix composite containing randomly oriented short carbon fibers. The generated complex microstructure model in abaqus code is sliced into thin slices for reducing computing resources. The simulated results from multiple sliced models were averaged to approximate the result for the full volume element. The simulated mechanical response by use of multiple sliced models is validated via comparison with the experimental data.

References

References
1.
McWilliams
,
B.
,
Yu
,
J.
,
Klier
,
E.
, and
Yen
,
C. F.
,
2014
, “
Mechanical Response of Discontinuous Ceramic Fiber Reinforced Metal Matrix Composites Under Quasi-Static and Dynamic Loadings
,”
Mater. Sci. Eng. A
,
590
, pp.
21
29
.
2.
Jin
,
Q.
,
Qin
,
J.
,
Zhang
,
D.
, and
Lv
,
W.
,
2006
, “
3D FEM Simulation of Mechanical Property of Composites Reinforced by Both Particles and Fibers
,”
Acta Mater. Compos. Sin.
,
23
(
2
), pp.
14
20
.
3.
Nguyen
,
T. D.
,
Phan
, V
. T.
, and
Bui
,
Q. H.
,
2015
, “
Modeling of Microstructure Effects on the Mechanical Behavior of Ultrafine-Grained Nickels Processed by Severe Plastic Deformation by Crystal Plasticity Finite Element Model
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), p.
021010
.
4.
Tu
,
S. T.
,
Cai
,
W. Z.
,
Yin
,
Y.
, and
Ling
,
X.
,
2005
, “
Numerical Simulation of Saturation Behavior of Physical Properties in Composites With Randomly Distributed Second-Phase
,”
J. Compos. Mater.
,
39
(
7
), pp.
617
631
.
5.
Kari
,
S.
,
Berger
,
H.
, and
Gabbert
,
U.
,
2007
, “
Numerical Evaluation of Effective Material Properties of Randomly Distributed Short Cylindrical Fibre Composites
,”
Comput. Mater. Sci.
,
39
(
1
), pp.
198
204
.
6.
Hine
,
P. J.
,
Lusti
,
H. R.
, and
Gusev
,
A. A.
,
2004
, “
On the Possibility of Reduced Variable Predictions for the Thermoelastic Properties of Short Fibre Composites
,”
Compos. Sci. Technol.
,
64
(
7C8
), pp.
1081
1088
.
7.
Jin
,
B. C.
, and
Pelegri
,
A. A.
,
2011
, “
Three-Dimensional Numerical Simulation of Random Fiber Composites With High Aspect Ratio and High Volume Fraction
,”
ASME J. Eng. Mater. Technol.
,
133
(
4
), p.
041014
.
8.
Lee
,
W. J.
,
Son
,
J. H.
,
Park
,
I. M.
, and
Park
,
Y. H.
,
2010
, “
Direct Numerical Predictions for the Steady-State Creep Deformation of Extruded SiCW/Al6061 Composites Using a Representative Volume Element With Random Arrangement of Whiskers
,”
Comput. Mater. Sci.
,
48
(
4
), pp.
802
812
.
9.
Trias
,
D.
,
Costa
,
J.
,
Turon
,
A.
, and
Hurtado
,
J. E.
,
2006
, “
Determination of the Critical Size of a Statistical Representative Volume Element (SRVE) for Carbon Reinforced Polymers
,”
Acta Mater.
,
54
(
13
), pp.
3471
3484
.
10.
Pelegri
,
A. A.
, and
Kedlaya
,
D. N.
,
2008
, “
Design of Composites Using a Generic Unit Cell Model Coupled With a Hybrid Genetic Algorithm
,”
Composites, Part A
,
39
(
9
), pp.
1433
1443
.
11.
Aghdam
,
M. M.
, and
Dezhsetan
,
A.
,
2005
, “
Micromechanics Based Analysis of Randomly Distributed Fiber Reinforced Composites Using Simplified Unit Cell Model
,”
Compos. Struct.
,
71
(
3C4
), pp.
327
332
.
12.
Duschlbauer
,
D.
,
Böhm
,
H. J.
, and
Pettermann
,
H. E.
,
2006
, “
Computational Simulation of Composites Reinforced by Planar Random Fibers: Homogenization and Localization by Unit Cell and Mean Field Approaches
,”
J. Compos. Mater.
,
40
(
24
), pp.
2217
2234
.
13.
Tian
,
W. L.
,
Qi
,
L. H.
, and
Zhou
,
J. M.
,
2015
, “
Quantitative Characterization of the Fiber Orientation Variation in the Csf/Mg Composites
,”
Comput. Mater. Sci.
,
98
(
1
), pp.
56
63
.
14.
Gusev
,
A.
,
Heggli
,
M.
,
Lusti
,
H. R.
, and
Hine
,
P. J.
,
2002
, “
Orientation Averaging for Stiffness and Thermal Expansion of Short Fiber Composites
,”
Adv. Eng. Mater.
,
4
(
12
), pp.
931
933
.
15.
Terada
,
K.
,
Miura
,
T.
, and
Kikuchi
,
N.
,
1997
, “
Digital Image-Based Modeling Applied to the Homogenization Analysis of Composite Materials
,”
Comput. Mech.
,
20
(
4
), pp.
331
346
.
16.
Langer
,
S. A.
,
Fuller
,
E.
, and
Carter
,
W. C.
,
2001
, “
OOF: An Image-Based Finite-Element Analysis of Material Microstructures
,”
Comput. Sci. Eng.
,
3
(
3
), pp.
15
23
.
17.
Singh
,
H.
,
Gokhale
,
A. M.
,
Mao
,
Y.
, and
Spowart
,
J. E.
,
2006
, “
Computer Simulations of Realistic Microstructures of Discontinuously Reinforced Aluminum Alloy (DRA) Composites
,”
Acta Mater.
,
54
(
8
), pp.
2131
2143
.
18.
Zhou
,
J. M.
,
Chen
,
Z.
, and
Qi
,
L. H.
,
2014
, “
Plastic Micromechanical Response of 2D Cross Ply Magnesium Matrix Composites
,”
Proc. Eng.
,
81
, pp.
1354
1359
.
19.
Zhou
,
J. M.
,
Gokhale
,
A. M.
,
Gurumurthy
,
A.
, and
Bhat
,
S. P.
,
2015
, “
Realistic Microstructural RVE-Based Simulations of Stress–Strain Behavior of a Dual-Phase Steel Having High Martensite Volume Fraction
,”
Mater. Sci. Eng. A
,
630
, pp.
107
115
.
20.
Lee
,
W. J.
,
Son
,
J. H.
,
Park
, I
. M.
,
Oak
,
J. J.
,
Kimura
,
H.
, and
Park
,
Y. H.
,
2010
, “
Analysis of 3D Random Al18B4O33 Whisker Reinforced Mg Composite Using FEM and Random Sequential Adsorption
,”
Mater. Trans.
,
51
(
6
), pp.
1089
1093
.
21.
Tian
,
W. L.
,
Qi
,
L. H.
,
Zhou
,
J. M.
, and
Guan
,
J. T.
,
2014
, “
Effects of the Fiber Orientation and Fiber Aspect Ratio on the Tensile Strength of Csf/Mg Composites
,”
Comput. Mater. Sci.
,
89
, pp.
6
11
.
22.
Bohm
,
H. J.
, and
Han
,
W.
,
2001
, “
Comparisons Between Three-Dimensional and Two-Dimensional Multi-Particle Unit Cell Models for Particle Reinforced Metal Matrix Composites
,”
Modell. Simul. Mater. Sci. Eng.
,
9
(
2
), pp.
47
65
.
23.
Shan
,
Z.
, and
Gokhale
,
A. M.
,
2001
, “
Micromechanics of Complex Three-Dimensional Microstructures
,”
Acta Mater.
,
49
(
11
), pp.
2001
2015
.
24.
Berger
,
H.
,
Kari
,
S.
,
Garbbert
,
U.
,
Ramos
,
R. R.
,
Castillero
,
J. B.
, and
Díaz
,
R. G.
,
2007
, “
Evaluation of Effective Material Properties of Randomly Distributed Short Cylindrical Fiber Composites Using a Numerical Homogenization Technique
,”
J. Mech. Mater. Struct.
,
2
(
8
), pp.
1561
1570
.
25.
Harper
,
L. T.
,
Qian
,
C.
,
Turner
,
T. A.
,
Li
,
S.
, and
Warrior
,
N. A.
,
2012
, “
Representative Volume Elements for Discontinuous Carbon Fibre Composites—Part 1: Boundary Conditions
,”
Compos. Sci. Technol.
,
72
(
2
), pp.
225
234
.
26.
Pan
,
Y.
,
Lorga
,
L.
, and
Pelegri
,
A. A.
,
2008
, “
Analysis of 3D Random Chopped Fiber Reinforced Composites Using FEM and Random Sequential Adsorption
,”
Comput. Mater. Sci.
,
43
(
3
), pp.
450
461
.
27.
Hinrichsen
,
E. L.
,
Feder
,
J.
, and
Jøssang
,
T.
,
1986
, “
Geometry of Random Sequential Adsorption
,”
J. Stat. Phys.
,
44
(
5–6
), pp.
793
827
.
28.
Kong
,
J.
,
Provatas
,
N.
, and
Wilkinson
,
D. S.
,
2010
, “
An Elastic Behavior Modeling of SiC Whisker-Reinforced Al2O3
,”
J. Am. Ceram. Soc.
,
93
(
3
), pp.
857
864
.
29.
Bailakanavar
,
M.
,
Liu
,
Y.
,
Fish
,
J.
, and
Zheng
,
Y.
,
2014
, “
Automated Modeling of Random Inclusion Composites
,”
Eng. Comput.
,
30
(
4
), pp.
609
625
.
30.
Zangenberg
,
J.
, and
Brondsted
,
P.
,
2013
, “
Determination of the Minimum Size of a Statistical Representative Volume Element From a Fibre-Reinforced Composite Based on Point Pattern Statistics
,”
Scr. Mater.
,
68
(
7
), pp.
503
505
.
31.
Galli
,
M.
,
Cugnoni
,
J.
, and
Botsis
,
J.
,
2012
, “
Numerical and Statistical Estimates of the Representative Volume Element of Elastoplastic Random Composites
,”
Eur. J. Mech. A
,
33
, pp.
31
38
.
32.
Tschopp
,
M. A.
,
Wilks
,
G. B.
, and
Spowart
,
J. E.
,
2008
, “
Multi-Scale Characterization of Orthotropic Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
16
(
6
), p.
065009
.
33.
Hazanov
,
S.
, and
Amieur
,
M.
,
1995
, “
On Overall Properties of Elastic Heterogeneous Bodies Smaller Than the Representative Volume
,”
Int. J. Eng. Sci.
,
33
(
9
), pp.
1289
1301
.
34.
Niezgoda
,
S. R.
,
Turner
,
D. M.
,
Fullwood
,
D. T.
, and
Kalidindi
,
S. R.
,
2010
, “
Optimized Structure Based Representative Volume Element Sets Reflecting the Ensemble-Averaged 2-Point Statistics
,”
Acta Mater.
,
58
(
13
), pp.
4432
4445
.
35.
Heinrich
,
C.
,
Aldridge
,
M.
,
Wineman
,
A. S.
,
Kieffer
,
J.
,
Waas
,
A. M.
, and
Shahwan
,
K.
,
2012
, “
The Influence of the Representative Volume Element (RVE) Size on the Homogenized Response of Cured Fiber Composites
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
7
), p.
0750077
.
36.
Khisaeva
,
Z. F.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
Mesoscale Bounds in Finite Elasticity and Thermoelasticity of Random Composites
,”
R. Soc. London Proc. Ser. A
,
2068
(
462
), pp.
1167
1180
.
37.
Tyrus
,
J. M.
,
Gosz
,
M.
, and
DeSantiago
,
E.
,
2006
, “
Micromechanical Modeling of Composites: A Local Approach for Imposing Periodic Boundary Conditions
,”
ASME
Paper No. IMECE2006-13094.
38.
Gluege
,
R.
,
2013
, “
Generalized Boundary Conditions on Representative Volume Elements and Their Use in Determining the Effective Material Properties
,”
Comput. Mater. Sci.
,
79
, pp.
408
416
.
39.
Du
,
X.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
On the Size of Representative Volume Element for Darcy Law in Random Media
,”
Proc. R. Soc. A
,
462
(
2074
), pp.
2949
2963
.
You do not currently have access to this content.