The contemporary approach of utilizing uniaxial tests data for prediction of failure in composite materials, that are anisotropic and inhomogeneous under multi-axial loading has witnessed to be inadequate. Consequently, biaxial and multi-axial tests appeared obligatory to enhance our perceptive about the performance of these complex materials. The present paper is focused on selection of suitable geometry for the test coupons required under biaxial loading. The specimen with (1) uniform stress about the gauge section, (2) failure in the gauge section, and (3) preventing the undesired nonuniform strain distribution due to stress concentration is selected. Finite element analysis (FEA) is implemented on the cross shape (╬) specimen with different undercuts and holes with different stress ratios ranging from (σx:σy) = 1:1, 1:0.5, 1:0.75, 1:−0.25, 1:−0.5, and 1:−0.75 are applied on the four edges of the specimen for selection of suitable geometry.

References

References
1.
Soden
,
P. D.
,
Hinton
,
M. J.
, and
Kaddour
,
A. S.
,
2002
, “
Biaxial Test Results for Strength and Deformation of a Range of E-Glass and Carbon Fibre Reinforced Composite Laminates: Failure Exercise Benchmark Data
,”
Compos. Sci. Technol.
,
62
(
12–13
), pp.
1489
1514
.
2.
Hinton
,
M. J.
,
Kaddour
,
A. S.
, and
Soden
,
P. D.
,
2004
, “
The World-Wide Failure Exercise: Its Origin, Concept and Content
,”
Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise
,
Elsevier Ltd.
,
Oxford, UK
, pp.
2
40
.
3.
Quaglini
,
V.
,
Corazza
,
C.
, and
Poggi
,
C.
,
2008
, “
Experimental Characterization of Orthotropic Technical Textiles Under Uniaxial and Biaxial Loading
,”
Composites, Part A
,
39
(
8
), pp.
1331
1342
.
4.
Kwonz
,
H. J.
,
Xia
,
Z.
, and
Jar
,
B.
,
2005
, “
Characterization of Biaxial Fatigue Resistance of Polymer Plates
,”
J. Mater. Sci.
,
40
(
4
), pp.
965
972
.
5.
Demmerle
,
S.
, and
Boehler
,
J. P.
,
1993
, “
Optimal Design of Biaxial Tensile Cruciform Specimens
,”
J. Mech. Phys. Solids
,
41
(
1
), pp.
143
181
.
6.
Yu
,
Y.
,
Wan
,
M.
, and
Wu
,
X. D.
,
2002
, “
Design of a Cruciform Biaxial Tensile Specimen for Limit Strain Analysis by FEM
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
67
70
.
7.
Makris
,
A.
,
Van Hemelrijck
,
D.
,
Ramault
,
C.
,
Zarouchas
,
D.
,
Lamkanfi
,
E.
, and
Van Paepegem
,
W.
,
2010
, “
An Investigation of the Mechanical Behavior of Carbon Epoxy Cross Ply Cruciform Specimens Under Biaxial Loading
,”
Polym. Compos.
,
31
(
9
), pp.
1554
1561
.
8.
Welsh
,
J. S.
, and
Adams
,
D. F.
,
2002
, “
An Experimental Investigation of Biaxial Strength of IM6/3501-6 Carbon/Epoxy Cross-Ply Laminates Using Cruciform Specimens
,”
Composites, Part A
,
33
(
6
), pp.
829
839
.
9.
Smits
,
A.
,
Van Hemelrijck
,
D.
,
Philippidis
,
T. P.
, and
Cardon
,
A.
,
2006
, “
Design of a Cruciform Specimen for Biaxial Testing of Fibre Reinforced Composite Laminates
,”
Compos. Sci. Technol.
,
66
(
7–8
), pp.
964
975
.
10.
Lamkanfi
,
E.
,
Van Paepegem
,
W.
,
Degrieck
,
J.
,
Ramault
,
C.
,
Makris
,
A.
, and
Van Hemelrijck
,
D.
,
2010
, “
Strain Distribution in Cruciform Specimens Subjected to Biaxial Loading Conditions—Part 1: Two-Dimensional Versus Three-Dimensional Finite Element Model
,”
Polym. Test.
,
29
(
1
), pp.
7
13
.
11.
Mateen
,
M. A.
,
Tajuddin
,
Md.
,
Ravi Shankar
,
D. V.
, and
Manzoor Hussain
,
M.
,
2013
, “
Finite Element Analysis of Glass/Epoxy Composite Under Bi-Axial Loading
,”
International Conference on Advancements in Polymeric materials
, CIPET Lucknow, India, Mar. 1–3, pp.
152
159
.
12.
Sun
,
C. T.
, and
Tao
,
J.
,
1998
, “
Prediction of Failure Envelopes and Stress/Strain Behavior of Composite Laminates
,”
Compos. Sci. Technol.
,
58
(
7
), pp.
1125
1136
.
13.
Susuki
,
I.
,
1992
, “
Biaxial Testing of Composite Plate Using Cruciform Specimens
,” Composites Design, Manufacture and Application/ICCM VIII, Honolulu, HI, July 15–19, pp. 30–39.
14.
Lamkanfi
,
E.
,
Van Paepegem
,
W.
,
Degrieck
,
J.
,
Ramault
,
C.
,
Makris
,
A.
, and
Van Hemelrijck
,
D.
,
2010
, “
Strain Distribution in Cruciform Specimens Subjected to Biaxial Loading Conditions—Part 2: Influence of Geometrical Discontinuities
,”
Polym. Test.
,
29
(
1
), pp.
132
138
.
15.
Shiratori
,
E.
, and
Ikegami
,
K.
,
1967
, “
A New Biaxial Tensile Testing Machine With Flat Specimen
,”
Bull. Tokyo Inst. Technol.
,
82
, pp.
105
118
.
16.
Parsons
,
M. W.
, and
Pascoe
,
K. J.
,
1975
, “
Development of a Biaxial Fatigue Testing Rig
,”
J. Strain Anal.
,
10
(
1
), pp.
1
9
.
17.
Ferron
,
G.
, and
Makinde
,
A.
,
1988
, “
Design and Development of a Biaxial Strength Testing Device
,”
J. Test. Eval.
,
16
(
3
), pp.
253
256
.
18.
Fessler
,
H.
, and
Musson
,
J.
,
1969
, “
A 30 ton Biaxial Testing Machine
,”
J. Strain Anal.
,
4
(
1
), pp.
22
26
.
19.
Makinde
,
A.
,
Thibodeau
,
L.
, and
Neale
,
K. W.
,
1992
, “
Development of an Apparatus for Biaxial Testing Using Cruciform Specimens
,”
Exp. Mech.
,
32
(
2
), pp.
138
144
.
20.
Boehler
,
J. P.
,
Demmerle
,
S.
, and
Koss
,
S.
,
1994
, “
A New Direct Biaxial Testing Machine for Anisotropic Materials
,”
Exp. Mech.
,
34
(
1
), pp.
1
9
.
21.
Welsh
,
J. S.
, and
Adams
,
D. F.
,
2000
, “
Development of an Electromechanical Triaxial Test Facility for Composite Materials
,”
Exp. Mech.
,
40
(
3
), pp.
312
320
.
22.
Lin
,
W. P.
, and
Hu
,
H. T.
,
2002
, “
Parametric Study of Failure Stresses in Fiber Reinforced Composite Laminates Subjected to Biaxial Tensile Load
,”
J. Compos. Mater.
,
36
(
12
), pp.
1481
1504
.
23.
Geiger
,
M.
,
Hubn
,
W.
, and
Merklein
,
M.
,
2005
, “
Specimen for a Novel Concept of the Biaxial Tension Test
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
177
183
.
24.
Broughton
,
W. R.
, and
Sims
,
G. D.
,
1994
, “
An Overview of Through-Thickness Test Methods for Polymer Matrix Composites
,” National Physical Laboratory, Middlesex, UK, NPL Report DMM (A) 148, NPL Doc. Ref: PDB: 144.
You do not currently have access to this content.